【題目】解不等式(組),并在數(shù)軸上表示它的解集
(1)2(1+x)<3;
(2).
【答案】(1)x,該不等式的解集在數(shù)軸上表示見解析;(2)x≥6,不等式組的解集在數(shù)軸上表示見解析.
【解析】
(1)按照去括號、移項、合并同類項、系數(shù)化為1的步驟求出解集,然后畫數(shù)軸表示即可;
(2)先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集,再畫數(shù)軸表示即可.
(1)去括號得:2+2x<3,
移項得:2x<3﹣2,
合并同類項得:2x<1,
系數(shù)化為1得:x<,
即不等式的解集為:x,
該不等式的解集在數(shù)軸上表示如下:
(2)解不等式2x+3≥x+9得:x≥6,
解不等式>2﹣x得:x,
即不等式組的解集為:x≥6,
不等式組的解集在數(shù)軸上表示如下:
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明:
已知:如圖,點D、E、F分別在線段AB、BC、AC上,連接DE、EF、DM平分∠ADE交EF于點M,,求證:。
證明:(已知)
又(平角定義)
∴∠2=∠BEM(____________________)
∴__________(_________________________)
(_____________________________)
(_____________________________)
又∵DM平分∠ADE(已知)
(角平分線定義)
(等量代換)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳以、兩種食材,利用不同的搭配方式推出了兩款健康餐,其中,甲產品每份含200克、200克;乙產品每份含200克、100克.甲、乙兩種產品每份的成本價分別為、兩種食材的成本價之和,若甲產品每份成本價為16元.店家在核算成本的時候把、兩種食材單價看反了,實際成本比核算時的成本多688元,如果每天甲銷量的4倍和乙銷量的3倍之和不超過120份,那么餐廳每天實際成本最多為______元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E為AD邊上的一點,過C點作CF⊥CE交AB的延長線于點F.
(1)求證:△CDE∽△CBF;
(2)若B為AF的中點,CB=3,DE=1,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位農民帶上若干千克自產的土豆進城出售.為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關系,如圖,結合圖象回答下列問題:
(1)農民自帶的零錢是多少?
(2)求出降價前每千克的土豆價格是多少?
(3)降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢)是26元,試問他一共帶了多少千克土豆?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一節(jié)數(shù)學課上,老師出示了這樣一個問題讓學生探究:
已知:如圖在△ABC中,點D 是BA邊延長線上一動點,點F 在BC上,且,連接DF交AC于點E .
(1)如圖1,當點E恰為DF的中點時,請求出的值;
(2)如圖2,當時,請求出的值(用含a的代數(shù)式表示).
思考片刻后,同學們紛紛表達自己的想法:
甲:過點F作FG∥AB交AC于點G,構造相似三角形解決問題;
乙:過點F作FG∥AC交AB于點G,構造相似三角形解決問題;
丙:過點D作DG∥BC交CA延長線于點G,構造相似三角形解決問題;
老師說:“這三位同學的想法都可以” .
請參考上面某一種想法,完成第(1)問的求解過程,并直接寫出第(2)問的值.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉得到△DEC,使點A的對應點D恰好落在邊AB上,點B的對應點為E,連接BE,以下四個結論:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC,其中一定正確的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線m∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線m于點E,垂足為點F,連接CD,BE.
(1)求證:CE=AD;
(2)當點D是AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)當∠A的大小滿足什么條件時,四邊形BECD是正方形?(不需要證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com