【題目】如圖,在△ABC中,∠A=90°,P是BC上一點,且DB=DC,過BC上一點P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,則PE+PF的長是( )
A. B. 6C. D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=∠AFE,EA是∠BEF的平分線,求證:
(1)△ABE≌△AFE;
(2)∠FAD=∠CDE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過D作DO⊥AB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長;
(3)當△AB′D為等腰三角形時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)調(diào)查,初中學生課桌椅不合格率達76.7%(不合格是指不能按照學生不同的身高來調(diào)節(jié)課桌椅的高度),為了解初中生的身高情況,隨機抽取了某校初中部分男生、女生進行調(diào)查收集數(shù)據(jù)如下:
男生身高(單位:cm):163 161 160 163 161 162 163 164 163 163
女生身高(單位:cm):164 161 160 161 161 162 160 162 163 162
整理數(shù)據(jù):
160 | 161 | 162 | 163 | 164 | |
男生(人) | 1 | 2 | 1 | a | 1 |
女生(人) | 2 | b | 3 | 1 | 1 |
根據(jù)以上信息,解答下列問題:
(1)填空:a= ,b= ,并補全條形統(tǒng)計圖;
(2)現(xiàn)有兩名身高都為163cm的男生和女生,比較這兩名同學分別在男生、女生中的身高情況,并簡述理由;
(3)根據(jù)相關(guān)研究發(fā)現(xiàn),只有身高為161cm的初中生課桌椅是合格的,試估計全校1000名學生中,有多少名學生的課桌椅是合格的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線AB∥CD,直線EF分別交AB、CD于點A、C,CM是∠ACD的平分線,CM交AB于點N.
(1)如圖①,過點A作AC的垂線交CM于點M,若∠MCD=55°,求∠MAN的度數(shù);
(2)如圖②,點G是CD上的一點,連接MA、MG,若MC平分∠AMG且∠AMG=36°,∠MGD+∠EAB=180°,求∠ACD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標系,拋物線y=﹣x2+x+4經(jīng)過A、B兩點.
(1)寫出點A、點B的坐標;
(2)若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點E、M和點P,連接PA、PB.設(shè)直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)在(2)的條件下,是否存在t,使得△PAM是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知B(0,b)(b>0)是y軸上一動點,直線l經(jīng)過點A(1,0)及點B,將Rt△ABO折疊,使得點B與點O重合,折痕分別交y軸、直線AB于點E、F,連接OF.
(1)當b=2時,求直線l的函數(shù)解析式;
(2)請用含有字母b的代數(shù)式表示線段OF的長,并說明線段OF與線段AB的數(shù)量關(guān)系;
(3)如圖,在(1)的條件下,設(shè)點P是線段AB上一動點(不與A、B重合),將線段OP繞點O逆時針旋轉(zhuǎn)90°至OQ,連結(jié)BQ、PQ,PQ交y軸于點T,設(shè)點P的橫坐標為t.
①當△OPQ的面積最小時,求T的坐標;
②若△OPB是等腰三角形,請直接寫出滿足條件的t的值;
③若△OQB是直角三角形,請直接寫出滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個小正方形的邊長都為1.
(1)建立適當?shù)钠矫嬷苯亲鴺讼岛,若點A(1,3)、C(2,1),則點B的坐標為______;
(2)△ABC的面積為______;
(3)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于A、B兩點,且點A的橫坐標和點B的縱坐標都是-2 , 求:
(1)一次函數(shù)的解析式;
(2)△AOB的面積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com