精英家教網 > 初中數學 > 題目詳情
函數y=,若-4≤x<-2,則( )
A.2≤y<4
B.-4≤y<-2
C.-2≤y<4
D.-4<y≤-2
【答案】分析:當-4≤x<-2<0,在函數y=的單調遞減區(qū)間,所以將定義域倆端的數值代入函數關系式即可得出對應自變量的函數值.即得出函數的取值范圍.
解答:解:根據題意,當x=-4時,y=-2;
當x=-2時,y=-4;
故函數值的取值范圍為-4<y≤-2;
故選D.
點評:本題考查了結合反比例函數的性質由自變量的取值范圍來確定函數值的取值范圍,同學們應重點掌握.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,直線y=
3
x+3
分別交x軸、y軸于B、A兩點,拋物線L:y=ax2+bx+c的頂點G在x軸上,且過(0,4)和(4,4)兩點.
(1)求拋物線L的解析式;
(2)拋物線L上是否存在這樣的點C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請求出C點的坐標,若不存在,請說明理由;
(3)將拋物線L沿x軸平行移動得拋物線L1,其頂點為P,同時將△PAB沿直線AB翻折得到△DAB,使點D落在拋物線L1上.試問這樣的拋物線L1是否存在,若存在,求出L1對應的函數關系式,若不存在,說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,頂點為D的拋物線y=x2+bx-3與x軸相交于A,B兩點,與y軸相交于點C,連接BC,已知△BOC是等腰三角形.
(1)求點B的坐標及拋物線y=x2+bx-3的解析式;
(2)求四邊形ACDB的面積;
(3)若點E(x,y)是y軸右側的拋物線上不同于點B的任意一點,設以A,B,C,E為頂點的四邊形的面積為S.
①求S與x之間的函數關系式.
②若以A,B,C,E為頂點的四邊形與四邊形ACDB的面積相等,求點E的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知平面直角坐標系xOy中,點A(2,m),B(-3,n)為兩動點,其中m>1,連接O精英家教網A,OB,OA⊥OB,作BC⊥x軸于C點,AD⊥x軸于D點.
(1)求證:mn=6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:2?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角梯形OABC中,OA∥BC,A、B兩點的坐標分別為A(13,0),B(11,12).動點P、Q分別從O、B兩點出發(fā),點P以每秒2個單位的速度沿x軸向終點A運動,點Q以每秒1個單位的速度沿BC方向運動;當點P停止運動時,點Q也同時停止運動.線段PQ和OB相交于點D,過點D作DE∥x軸,交AB于點E,射線QE交x軸于點F.設動點P、Q運動時間精英家教網為t(單位:秒).
(1)當t為何值時,四邊形PABQ是平行四邊形.
(2)△PQF的面積是否發(fā)生變化?若變化,請求出△PQF的面積s關于時間t的函數關系式;若不變,請求出△PQF的面積.
(3)隨著P、Q兩點的運動,△PQF的形狀也隨之發(fā)生了變化,試問何時會出現等腰△PQF?

查看答案和解析>>

科目:初中數學 來源: 題型:

已知一次函數y=精英家教網圖象過點A(0,3)B(2,4).題目中的矩形部分是一段因墨水污染而無法辨認的文字.
(1)根據現有的信息,你能否求出題中的一次函數的解析式?若能,寫出求解過程,若不能說明理由;
(2)根據關系式畫出函數圖象;
(3)小明說“本題不用求函數關系式也能畫出函數圖象”,你認為對嗎?為什么?
(4)過點B能不能畫出一直線BC將ABO(O為坐標原點)分成面積比為1:2的兩部分?如能,可以畫出幾條,并寫出這樣的直線所對應的函數關系式;若不能,說明理由.

查看答案和解析>>

同步練習冊答案