【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),∠BOC=120°,OD平分∠AOC

(1)求∠COD的度數(shù).

請你補(bǔ)全下列解題過程.

∵點(diǎn)O為直線AB上一點(diǎn),

∴∠AOB=_____

∵∠BOC =120°,

∴∠AOC=______

OD 平分∠AOC,

∴∠COD=AOC( )

∴∠COD=________

(2)E是直線AB外一點(diǎn),滿足∠COE:∠BOE=41直接寫出∠BOE的度數(shù).

【答案】(1)180°;60°;角平分線定義;30°(2)24°40°.

【解析】

(1)利用∠BOC=120°及補(bǔ)角的性質(zhì)就可求出∠AOC的度數(shù),根據(jù)角平分線的定義就可求出∠COD的度數(shù);

(2)OE在∠BOC內(nèi)部和OE在∠BOC外部兩種情況進(jìn)行計(jì)算.

解:(1)∵點(diǎn)O為直線AB上一點(diǎn),

∴∠AOB= 180°

∵∠BOC =120°

∴∠AOC= 60°

∵OD 平分∠AOC,

∴∠COD=∠AOC(角平分線定義)

∴∠COD= 30°

(2)如圖,當(dāng)OE∠BOC內(nèi)部時(shí),

∠BOC=120°,∠COE:∠BOE=4:1

∴∠BOE=∠BOC=24°;

如圖,當(dāng)OE∠BOC外部時(shí),

∠BOC=120°,∠COE:∠BOE=4:1,

=,

∴∠BOE=40°.

故答案為:(1)180°60°;角平分線定義;30°;(2)24°40°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個(gè)長方形沿著對角線剪開即可得到兩個(gè)全等的三角形,再把△ABC沿著AC方向平移,得到圖中的△GBH,BGAC于點(diǎn)E,GHCD于點(diǎn)F.在圖中,除△ACD與△HGB全等外,你還可以指出哪幾對全等的三角形(不能添加輔助線和字母)?請選擇其中一對加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)PAOB的角平分線OC上一點(diǎn),分別連接AP、BP,若再添加一個(gè)條件即可判定AOP≌△BPO,則一下條件中:A=BAPO=BPO;APC=BPC; ④AP=BP;⑤OA=OB.其中一定正確的是 (只需填序號即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x+2y=7在自然數(shù)范圍內(nèi)的解(

A. 有無數(shù)對 B. 只有1

C. 只有3 D. 只有4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,BAC=50°,BAC的平分線與AB的垂直平分線交于點(diǎn)O、點(diǎn)C沿EF折疊后與點(diǎn)O重合,則CEF的度數(shù)是(  )

A. 60° B. 55° C. 50° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)軸上的點(diǎn)P,Q,給出如下定義:若點(diǎn)P到點(diǎn)Q的距離為d(d≥0),則稱d為點(diǎn)P到點(diǎn)Qd追隨值,記作d[PQ].例如,在數(shù)軸上點(diǎn)P表示的數(shù)是2,點(diǎn)Q表示的數(shù)是5,則點(diǎn)P到點(diǎn)Qd追隨值為d[PQ]=3

問題解決:

(1)點(diǎn)M,N都在數(shù)軸上,點(diǎn)M表示的數(shù)是1,且點(diǎn)N到點(diǎn)Md追隨值d[MN]=a(a≥0),則點(diǎn)N表示的數(shù)是_____(用含a的代數(shù)式表示);

(2)如圖,點(diǎn)C表示的數(shù)是1,在數(shù)軸上有兩個(gè)動(dòng)點(diǎn)AB都沿著正方向同時(shí)移動(dòng),其中A點(diǎn)的速度為每秒3個(gè)單位,B點(diǎn)的速度為每秒1個(gè)單位,點(diǎn)A從點(diǎn)C出發(fā),點(diǎn)B表示的數(shù)是b,設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)

①當(dāng)b=4時(shí),問t為何值時(shí),點(diǎn)A到點(diǎn)Bd追隨值d[AB]=2;

②若0<t≤3時(shí),點(diǎn)A到點(diǎn)Bd追隨值d[AB]≤6,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,E為CD的中點(diǎn),連接AE、BE,BEAE,延長AE交BC的延長線于點(diǎn)F求證:

1FC=AD;

2AB=BC+AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,AB,CD是互相垂直的兩條直徑,點(diǎn)P是⊙O上任意一點(diǎn)(P與A,B,C,D不重合),過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥CD于點(diǎn)N,點(diǎn)Q是MN的中點(diǎn),當(dāng)點(diǎn)P沿著圓周轉(zhuǎn)過45°時(shí),線段OQ所掃過過的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號里:

3,0.20,-|+|,-5%,-,|-9|,-(-1),-23,+3.

(1)正整數(shù)集合:{ …};

(2)負(fù)分?jǐn)?shù)集合:{ …};

(3)負(fù)數(shù)集合:{ …};

(4)整數(shù)集合:{ …};

(5)分?jǐn)?shù)集合:{ …};

(6)非負(fù)數(shù)集合:{ …}.

查看答案和解析>>

同步練習(xí)冊答案