【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),∠BOC=120°,OD平分∠AOC.
(1)求∠COD的度數(shù).
請你補(bǔ)全下列解題過程.
∵點(diǎn)O為直線AB上一點(diǎn),
∴∠AOB=_____.
∵∠BOC =120°,
∴∠AOC=______.
∵OD 平分∠AOC,
∴∠COD=∠AOC.( )
∴∠COD=________.
(2)若E是直線AB外一點(diǎn),滿足∠COE:∠BOE=4:1直接寫出∠BOE的度數(shù).
【答案】(1)180°;60°;角平分線定義;30°;(2)24°或40°.
【解析】
(1)利用∠BOC=120°及補(bǔ)角的性質(zhì)就可求出∠AOC的度數(shù),根據(jù)角平分線的定義就可求出∠COD的度數(shù);
(2)分OE在∠BOC內(nèi)部和OE在∠BOC外部兩種情況進(jìn)行計(jì)算.
解:(1)∵點(diǎn)O為直線AB上一點(diǎn),
∴∠AOB= 180° .
∵∠BOC =120°,
∴∠AOC= 60° .
∵OD 平分∠AOC,
∴∠COD=∠AOC.(角平分線定義)
∴∠COD= 30° ;
(2)如圖,當(dāng)OE在∠BOC內(nèi)部時(shí),
∵∠BOC=120°,∠COE:∠BOE=4:1,
∴∠BOE=∠BOC=24°;
如圖,當(dāng)OE在∠BOC外部時(shí),
∵∠BOC=120°,∠COE:∠BOE=4:1,
∴=,
∴∠BOE=40°.
故答案為:(1)180°;60°;角平分線定義;30°;(2)24°或40°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將一個(gè)長方形沿著對角線剪開即可得到兩個(gè)全等的三角形,再把△ABC沿著AC方向平移,得到圖②中的△GBH,BG交AC于點(diǎn)E,GH交CD于點(diǎn)F.在圖②中,除△ACD與△HGB全等外,你還可以指出哪幾對全等的三角形(不能添加輔助線和字母)?請選擇其中一對加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB的角平分線OC上一點(diǎn),分別連接AP、BP,若再添加一個(gè)條件即可判定△AOP≌△BPO,則一下條件中:①∠A=∠B;②∠APO=∠BPO;③∠APC=∠BPC; ④AP=BP;⑤OA=OB.其中一定正確的是 (只需填序號即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程x+2y=7在自然數(shù)范圍內(nèi)的解( )
A. 有無數(shù)對 B. 只有1對
C. 只有3對 D. 只有4對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O、點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是( )
A. 60° B. 55° C. 50° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)軸上的點(diǎn)P,Q,給出如下定義:若點(diǎn)P到點(diǎn)Q的距離為d(d≥0),則稱d為點(diǎn)P到點(diǎn)Q的d追隨值,記作d[PQ].例如,在數(shù)軸上點(diǎn)P表示的數(shù)是2,點(diǎn)Q表示的數(shù)是5,則點(diǎn)P到點(diǎn)Q的d追隨值為d[PQ]=3.
問題解決:
(1)點(diǎn)M,N都在數(shù)軸上,點(diǎn)M表示的數(shù)是1,且點(diǎn)N到點(diǎn)M的d追隨值d[MN]=a(a≥0),則點(diǎn)N表示的數(shù)是_____(用含a的代數(shù)式表示);
(2)如圖,點(diǎn)C表示的數(shù)是1,在數(shù)軸上有兩個(gè)動(dòng)點(diǎn)A,B都沿著正方向同時(shí)移動(dòng),其中A點(diǎn)的速度為每秒3個(gè)單位,B點(diǎn)的速度為每秒1個(gè)單位,點(diǎn)A從點(diǎn)C出發(fā),點(diǎn)B表示的數(shù)是b,設(shè)運(yùn)動(dòng)時(shí)間為t(t>0).
①當(dāng)b=4時(shí),問t為何值時(shí),點(diǎn)A到點(diǎn)B的d追隨值d[AB]=2;
②若0<t≤3時(shí),點(diǎn)A到點(diǎn)B的d追隨值d[AB]≤6,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長AE交BC的延長線于點(diǎn)F.求證:
(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為2,AB,CD是互相垂直的兩條直徑,點(diǎn)P是⊙O上任意一點(diǎn)(P與A,B,C,D不重合),過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥CD于點(diǎn)N,點(diǎn)Q是MN的中點(diǎn),當(dāng)點(diǎn)P沿著圓周轉(zhuǎn)過45°時(shí),線段OQ所掃過過的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號里:
-3,0.2,0,-|+|,-5%,-,|-9|,-(-1),-23,+3.
(1)正整數(shù)集合:{ …};
(2)負(fù)分?jǐn)?shù)集合:{ …};
(3)負(fù)數(shù)集合:{ …};
(4)整數(shù)集合:{ …};
(5)分?jǐn)?shù)集合:{ …};
(6)非負(fù)數(shù)集合:{ …}.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com