如圖,某人在山坡坡腳A處測得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到P處再測得點(diǎn)C的仰角為45°,已知OA=100米,山坡坡度為
1
2
(即tan∠PAB=
1
2
),且O,A,B在同一條直線上.求電視塔OC的高度以及此人所在位置點(diǎn)P的鉛直高度.(測傾器的高度忽略不計,結(jié)果保留根號形式)
作PE⊥OB于點(diǎn)E,PF⊥CO于點(diǎn)F,
在Rt△AOC中,AO=100,∠CAO=60°,
∴CO=AO•tan60°=100
3
(米)
設(shè)PE=x米,
∵tan∠PAE=
PE
AE
=
1
2
,
∴AE=2x.
在Rt△PCF中,
∠CPF=45°,CF=100
3
-x,PF=OA+AE=100+2x,
∵PF=CF,
∴100+2x=100
3
-x,
解得x=
100(
3
-1)
3
(米).
答:電視塔OC高為100
3
米,點(diǎn)P的鉛直高度為
100(
3
-1)
3
(米).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一艘貨輪向正北方向航行,在點(diǎn)A處測得燈塔M在北偏西30°,貨輪以每小時20海里的速度航行,1小時后到達(dá)B處,測得燈塔M在北偏西45°,問該貨輪到達(dá)燈塔正東方向D處時,貨輪與燈塔M的距離是多少?
(精確到0.1海里,
3
≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,看旗桿頂部M的仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,看旗桿頂部M的仰角為30°.兩人相距30米且位于旗桿兩側(cè)(點(diǎn)B,N,D在同一條直線上).求旗桿MN的高度.(參考數(shù)據(jù):
2
≈1.4
3
≈1.7
,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一座建于若干年前的水庫大壩的橫斷面如圖所示,其中背水面的整個坡面是長為90米、寬為5米的矩形.現(xiàn)需將其整修并進(jìn)行美化,方案如下:①將背水坡AB的坡度由1:0.75改為1:
3
;②用一組與背水坡面長邊垂直的平行線將背水坡面分成9塊相同的矩形區(qū)域,依次相間地種草與栽花.
(1)求整修后背水坡面的面積;
(2)如果栽花的成本是每平方米25元,種草的成本是每平方米20元,那么種植花草至少需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,客輪在海上以30km/h的速度由B向C航行,在B處測得燈塔A的方位角為北偏東80°,測得C處的方位角為南偏東25°,航行1小時后到達(dá)C處,在C處測得A的方位角為北偏東20°,求C到A的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,對角線AC、BD相交于點(diǎn)0,∠AOB=60°,AB=5,則AD的長是( 。
A.5
3
B.5
2
C.5D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,Rt△ABC中,∠C=90°,AB=4,△ABC的面積為
5
2
,則tanA+tanB等于( 。
A.
4
5
B.
5
2
C.4D.
16
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若平行四邊形相鄰兩邊的長分別為10和15,它們的夾角為60°,則平行四邊形的面積是( 。┟2
A.150B.75
3
C.9D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某船由西向東航行,在點(diǎn)A測得小島O在北偏東60°,船行了10海里后到達(dá)點(diǎn)B,這時測得小島O在北偏東45°,由于以小島O為圓心16海里為半徑的范圍內(nèi)有暗礁,如果該船不改變航向繼續(xù)航行,有沒有觸礁的危險?通過計算說明.(供選用數(shù)據(jù):
2
=1.414,
3
=1.732)

查看答案和解析>>

同步練習(xí)冊答案