【題目】如圖,已知四邊形ABCD是平行四邊形,AC、BD是對角線,下列條件中能判定平行四邊形ABCD為矩形的是()
A. B.
C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,矩形ABCD邊AB=6,BC=8,再沿EF折疊,使D點與B點重合,C點的對應(yīng)點為G,將△BEF繞著點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為a(0°<a<180°),記旋轉(zhuǎn)這程中的三角形為△BE′F′,在旋轉(zhuǎn)過程中設(shè)直線E′F′與射錢EF、射線ED分別交于點M、N,當(dāng)EN=MN時,則FM的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°,求證:ADBC=APBP;
(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當(dāng)∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:
如圖3,在△ABD中,AB=6,AD=BD=5,點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠CPD=∠A,設(shè)點P的運動時間為t(秒),當(dāng)DC=4BC時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,邊AB的長為3,點E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD,若四邊形BEDF是菱形,且EF=AE+FC,則邊BC的長為( )
A. 2 B. 6 C. 3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次社會調(diào)查活動中,小華收集到某“健步走運動”團隊中20名成員一天行走的步數(shù),記錄如下: 5640 6430 6520 6798 7325
8430 8215 7453 7446 6754
7638 6834 7326 6830 8648
8753 9450 9865 7290 7850
對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 3 |
E | 9500≤x<10500 | n |
請根據(jù)以上信息解答下列問題:
(1)求m,n的值;
(2)補全頻數(shù)發(fā)布直方圖;
(3)這20名“健步走運動”團隊成員一天行走步數(shù)的中位數(shù)落在哪一組?
(4)若該團隊共有120人,請估計其中一天行走步數(shù)不少于7500步的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2014年開始投入技術(shù)改進資金,經(jīng)技術(shù)改進后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
年度 | 投入技改資金萬元 | 產(chǎn)品成本萬元件 |
2014 |
|
|
2015 | 3 | 12 |
2016 | 4 | 9 |
2017 |
| 8 |
(1)分析表中數(shù)據(jù),請從一次函數(shù)和反比例函數(shù)中確定一個函數(shù)表示其變化規(guī)律,直接寫出y與x的函數(shù)關(guān)系式;
(2)按照這種變化規(guī)律,若2018年已投入資金6萬元.
①預(yù)計2018年每件產(chǎn)品成本比2017年降低多少萬元?
②若計劃在2018年把每件產(chǎn)品成本降低到5萬元,則還需要投入技改資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎.該打車方式的計價規(guī)則如圖①所示,若車輛以平均速度vkm/h行駛了skm,則打車費用為(ps+60q·)元(不足9元按9元計價).小明某天用該打車方式出行,按上述計價規(guī)則,其打車費用y(元)與行駛里程x(km)的函數(shù)關(guān)系也可由如圖②表示.
(1)當(dāng)x≥6時,求y與x的函數(shù)關(guān)系式.
(2)若p=1,q=0.5,求該車行駛的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點E在AC上,∠AEB=∠ABC.
(1)圖1中,作∠BAC的角平分線AD,分別交CB、BE于D、F兩點,求證:∠EFD=∠ADC;
(2)圖2中,作△ABC的外角∠BAG的角平分線AD,分別交CB、BE的延長線于D、F兩點,試探究(1)中結(jié)論是否仍成立?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,CE⊥AB 于 E,DF⊥AB 于 F,AC∥ED,CE 是∠ACB 的平分線, 則圖中與∠FDB 相等的角(不包含∠FDB)的個數(shù)為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com