【題目】如圖,已知△ABC,按如下步驟作圖:
(1)以A圓心,AB長為半徑畫;
(2)以C為圓心,CB長為半徑畫弧,兩弧相交于點D;
(3)連接BD,與AC交于點E,連接AD,CD.
①四邊形ABCD是中心對稱圖形;
②△ABC≌△ADC;
③AC⊥BD且BE=DE;
④BD平分∠ABC.
其中正確的是( )
A.①② B.②③ C.①③ D.③④
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AD=1,CD=,連接AC,將線段AC、AB分別繞點A順時針旋轉90°至AE、AF,線段AE與弧BF交于點G,連接CG,則圖中陰影部分面積為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形都是由大小相同的小正方形按一定規(guī)律組成的,其中第1個圖形的周長為4,第2個圖形的周長為10,第3個圖形的周長為18,…,按此規(guī)律排列,回答下列問題:
(1)第5個圖形的周長為 ;
(2)第個圖形的周長為 ;
(3)若第個圖形的周長為180,則 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在菱形ABCD中,∠A=120°,點E是BC邊的中點,點P是對角線BD上一動點,設PD的長度為x,PE與PC的長度和為y,圖2是y關于x的函數(shù)圖象,其中H是圖象上的最低點,則a+b的值為( 。
A.7B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“揚州漆器”名揚天下,某網店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關系,如圖所示.
(1)求與之間的函數(shù)關系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我國古算書《周髀算經》中記載周公與商高的談話,其中就有勾股定理的最早文字記錄,即“勾三股四弦五”,亦被稱作商高定理.如圖1是由邊長相等的小正方形和直角三角形構成的,可以用其面積關系驗證勾股定理.圖2是由圖1放入矩形內得到的,,AB=3,AC=4,則D,E,F,G,H,I都在矩形KLMJ的邊上,那么矩形KLMJ的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“行千里致廣大”是重慶人民向大家發(fā)出的旅游邀請.如圖,某建筑物上有一個旅游宣傳語廣告牌,小亮在A處測得該廣告牌頂部E處的仰角為45°,然后沿坡比為5:12的斜坡AC行走65米至C處,在C處測得廣告牌底部F處的仰角為76°,已知CD與水平面AB平行,EG與CD垂直,且EF=2米,則廣告牌頂部E到CD的距離EG為( 。▍⒖紨(shù)據(jù):sin76°≈0.97,cos76°≈0.24.tan76°≈4)
A.46B.44C.71D.69
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,AB=4,BC=2,點D、E分別是邊BC、AC的中點,連接DE.將△CDE繞點C逆時針方向旋轉,記旋轉角為α.
(1)問題發(fā)現(xiàn)
①當α=0°時,=_______;
②當α=180°時,=______.
(2)拓展探究
試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
△CDE繞點C逆時針旋轉至A、B、E三點在同一條直線上時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市水果批發(fā)市場內有一種水果,保鮮期一周,如果冷藏,可以延長保鮮時間,但每天仍有一定數(shù)量的這種水果變質,假設這種水果保鮮期內的個體重量基本保持不變,F(xiàn)有一個體戶,按市場價收購了這種水果200千克放在冷藏室內,此時市場價為每千克2元,據(jù)測算,此后這種鮮水果每千克的價格每天可上漲0.2元,但存放一天需各種費用20元,日平均每天還有1千克變質丟棄.
(1)設天后每千克鮮水果的市場價元,寫出關于的函數(shù)關系式;
(2)若存放天后將鮮水果一次性出售,設鮮水果的銷售總金額為元,寫出關于的函數(shù)關系式;
(3)該個體戶將這批水果存放多少天后出售,可獲最大利潤?最大利潤是多少?
(本題不要求寫出自變量的取值范圍)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com