【題目】某校為了進(jìn)一步開(kāi)展“陽(yáng)光體育”活動(dòng),計(jì)劃用2000元購(gòu)買(mǎi)乒乓球拍,用2800元購(gòu)買(mǎi)羽毛球拍.已知一副羽毛球拍比一副乒乓球拍貴14元.該校購(gòu)買(mǎi)的乒乓球拍與羽毛球拍的數(shù)量能相同嗎?請(qǐng)說(shuō)明理由.
【答案】解:不能相同. 理由如下:
假設(shè)能相等,設(shè)乒乓球拍每一個(gè)x元,羽毛球拍就是x+14.
根據(jù)題意得方程: ,
解得x=35.
經(jīng)檢驗(yàn)得出,x=35是原方程的解,
但是當(dāng)x=35時(shí),2000÷35不是一個(gè)整數(shù),這不符合實(shí)際情況,所以不可能
【解析】假設(shè)能相等,設(shè)乒乓球拍每一個(gè)x元,羽毛球拍就是x+14,得方程 ,進(jìn)而求出x=35,再利用2000÷35不是一個(gè)整數(shù),得出答案即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分式方程的應(yīng)用的相關(guān)知識(shí),掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫(xiě)出答案(要有單位).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O,交斜邊AC于點(diǎn)D,點(diǎn)E為OB的中點(diǎn),連接CE并延長(zhǎng)交⊙O于點(diǎn)F,點(diǎn)F恰好落在 的中點(diǎn),連接AF并延長(zhǎng)與CB的延長(zhǎng)線相交于點(diǎn)G,連接OF.
(1)求證:OF= BG;
(2)若AB=4,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為放置在水平桌面上的臺(tái)燈的平面示意圖,燈臂AO長(zhǎng)為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺(tái)燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為1的半圓形紙片,按如圖方式折疊,使對(duì)折后圓弧的中點(diǎn)M與圓心O重合,則圖中陰影部分的面積是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是CD的中點(diǎn),點(diǎn)F在BC上,且FC= BC.圖中相似三角形共有( )
A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+b(b>4)與x軸、y軸分別相交于點(diǎn)A、B,與反比例函數(shù) 的圖象相交于點(diǎn)C、D(點(diǎn)C在點(diǎn)D的左側(cè)),⊙O是以CD長(zhǎng)為半徑的圓.CE∥x軸,DE∥y軸,CE、DE相交于點(diǎn)E.
(1)△CDE是三角形;點(diǎn)C的坐標(biāo)為 , 點(diǎn)D的坐標(biāo)為(用含有b的代數(shù)式表示);
(2)b為何值時(shí),點(diǎn)E在⊙O上?
(3)隨著b取值逐漸增大,直線y=x+b與⊙O有哪些位置關(guān)系?求出相應(yīng)b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】26.如圖,在四邊形ABCD中,∠DAB=∠ABC=90°,CD與以AB為直徑的半圓相切于點(diǎn)E,EF⊥AB于點(diǎn)F,EF交BD于點(diǎn)G,設(shè)AD=a,BC=b.
(1)求CD的長(zhǎng)度(用a,b表示);
(2)求EG的長(zhǎng)度(用a,b表示);
(3)試判斷EG與FG是否相等,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)點(diǎn)A(0,﹣4)的拋物線y= x2+bx+c與x軸相交于B(﹣2,0),C兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線y= x2+bx+c向上平移 個(gè)單位長(zhǎng)度,再向左平移m(m>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)設(shè)點(diǎn)M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com