【題目】如圖,已知在等腰Rt△ABC中,∠C=90°,斜邊AB=2,若將△ABC翻折,折痕EF分別交邊AC、邊BC于點E和點F(點E不與A點重合,點F不與B點重合),且點C落在AB邊上,記作點D.過點D作DK⊥AB,交射線AC于點K,設AD=x,y=cot∠CFE,
(1)求證:△DEK∽△DFB;
(2)求y關于x的函數(shù)解析式并寫出定義域;
(3)聯(lián)結CD,當 = 時,求x的值.
【答案】
(1)證明:如圖1,
由折疊可得:∠EDF=∠C=90°,∠DFE=∠CFE.
∵△ABC是等腰直角三角形,∠C=90°,
∴∠A=∠B=45°.
∵DK⊥AB,
∴∠ADK=∠BDK=90°,
∴∠AKD=45°,∠EDF=∠KDB=90°,
∴∠EKD=∠FBD,∠EDK=∠FDB,
∴△DEK∽△DFB;
(2)解:∵∠A=∠AKD=45°,
∴DK=DA=x.
∵AB=2,
∴DB=2﹣x.
∵△DFB∽△DEK,
∴ = ,
∴y=cot∠CFE=cot∠DFE= = = .
當點F在點B處時,
DB=BC=ABsinA=2× = ,AD=AB﹣AD=2﹣ ;
當點E在點A處時,
AD=AC=ABcosA=2× = ;
∴該函數(shù)的解析式為y= ,定義域為2﹣ <x<
(3)取線段EF的中點O,連接OC、OD,
∵∠ECF=∠EDF=90°,
∴OC=OD= EF.
設EF與CD交點為H,根據(jù)軸對稱的性質(zhì)可得EF⊥CD,且CH=DH= CD.
∵ = ,∴sin∠HOC= = ,
∴∠HOC=60°
① 若點K在線段AC上,如圖2,
∵CO= EF=OF,
∴∠OCF=∠OFC= ∠HOC=30°,
∴y=cot30°= ,
∴ = ,
解得:x= ﹣1;
②若點K在線段AC的延長線上,如圖3,
∵OC=OF,∠FOC=60°,
∴△OFC是等邊三角形,
∴∠OFC=60°,
∴y=cot60°= ,
∴ = ,
解得:x=3﹣ ;
綜上所述:x的值為 ﹣1或3﹣
【解析】(1)要證△DEK∽△DFB,只需證到∠EKD=∠FBD,∠EDK=∠FDB即可;(2)易得DK=DA=x,DB=2﹣x,由△DFB∽△DEK可得到 = ,從而可得y=cot∠CFE=cot∠DFE= = = ;然后只需先求出在兩個臨界位置(點F在點B處、點E在點A處)下的x值,就可得到該函數(shù)的定義域;(3)取線段EF的中點O,連接OC、OD,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OC=OD= EF.設EF與CD交點為H,根據(jù)軸對稱的性質(zhì)可得EF⊥CD,且CH=DH= CD.由 = 可得tan∠HOC= = ,從而得到∠HOC=60°.①若點K在線段AC上,如圖2,由∠HOC=60°可求得∠OFC=30°,由此可得到y(tǒng)的值,再把y的值代入函數(shù)解析式就可求出x的值;②若點K在線段AC的延長線上,如圖3,由∠HOC=60°可求得∠OFC=60°,由此可得到y(tǒng)的值,再把y的值代入函數(shù)解析式就可求出x的值.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家園林公司承接了哈爾濱市平房區(qū)園林綠化工程,已知乙公司單獨完成所需要的天數(shù)是甲公司單獨完成所需天數(shù)的1.5倍,如果甲公司單獨工作10天,再由乙公司單獨工作15天,這樣就可完成整個工程的三分之二.
(1)求甲、乙兩公司單獨完成這項工程各需多少天?
(2)上級要求該工程完成的時間不得超過30天.甲、乙兩公司合作若干天后,甲公司另有項目離開,剩下的工程由乙公司單獨完成,并且在規(guī)定時間內(nèi)完成,求甲、乙兩公司合作至少多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校九年級3班的一個學習小組進行測量小山高度的實踐活動.部分同學在山腳點A測得山腰上一點D的仰角為30°,并測得AD的長度為180米;另一部分同學在山頂點B測得山腳點A的俯角為45°,山腰點D的俯角為60度.請你幫助他們計算出小山的高度BC.(計算過程和結果都不取近似值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點M是BC邊上的任一點,連接AM并將線段AM繞M順時針旋轉90°得到線段MN,在CD邊上取點P使CP=BM,連接NP,BP.
(1)求證:四邊形BMNP是平行四邊形;
(2)線段MN與CD交于點Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數(shù)量關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D在邊AB上,線段DC繞點D逆時針旋轉,端點C恰巧落在邊AC上的點E處.如果 =m, =n.那么m與n滿足的關系式是:m=(用含n的代數(shù)式表示m).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AB=DC,點P是AD邊上一點,聯(lián)結PB、PC,且AB2=APPD,則圖中有對相似三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一條長為2014個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A﹣B﹣C﹣D﹣A…的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是( )
A.(﹣1,0)
B.(1,﹣2)
C.(1,1)
D.(﹣1,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機取出一個小球,記下數(shù)字為x,小張在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)求點Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將八個邊長為1的小正方形擺放在平面直角坐標系中,若過原點的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個單位后所得直線l′的函數(shù)關系式為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com