【題目】如圖,在平面直角坐標系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一條長為2014個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A﹣B﹣C﹣D﹣A…的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是( )

A.(﹣1,0)
B.(1,﹣2)
C.(1,1)
D.(﹣1,﹣1)

【答案】D
【解析】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),
∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,
∴繞四邊形ABCD一周的細線長度為2+3+2+3=10,
2014÷10=201…4,
∴細線另一端在繞四邊形第202圈的第4個單位長度的位置,
即從點B 向下沿BC2個單位所在的點的坐標即為所求,也就是點(﹣1,﹣1).
故選:D.
根據(jù)點的坐標求出四邊形ABCD的周長,然后求出另一端是繞第幾圈后的第幾個單位長度,從而確定答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當a≠0時,函數(shù)y=ax+1與函數(shù)y= 在同一坐標系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線MN與⊙O相切于點M,ME=EF且EF∥MN,則cos∠E=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在等腰Rt△ABC中,∠C=90°,斜邊AB=2,若將△ABC翻折,折痕EF分別交邊AC、邊BC于點E和點F(點E不與A點重合,點F不與B點重合),且點C落在AB邊上,記作點D.過點D作DK⊥AB,交射線AC于點K,設(shè)AD=x,y=cot∠CFE,
(1)求證:△DEK∽△DFB;
(2)求y關(guān)于x的函數(shù)解析式并寫出定義域;
(3)聯(lián)結(jié)CD,當 = 時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過點A(0,4)和B(1,﹣2).
(1)求此函數(shù)的解析式;并運用配方法,將此拋物線解析式化為y=a(x+m)2+k的形式;
(2)寫出該拋物線頂點C的坐標,并求出△CAO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AC⊥BD,點E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,依次連接各邊中點得到四邊形EFGH,求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( 1﹣20140﹣2sin30°+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對稱軸為直線x=﹣1的拋物線y=x2+bx+c,與x軸相交于A,B兩點,其中點A的坐標為(﹣3,0).
(1)求點B的坐標.
(2)點C是拋物線與y軸的交點,點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了增強中學(xué)生的體質(zhì),某校食堂每天都為學(xué)生提供一定數(shù)量的水果,學(xué)校李老師為了了解學(xué)生喜歡吃哪種水果,進行了抽樣調(diào)查,調(diào)查分為五種類型:A喜歡吃蘋果的學(xué)生;B喜歡吃桔子的學(xué)生;C.喜歡吃梨的學(xué)生;D.喜歡吃香蕉的學(xué)生;E喜歡吃西瓜的學(xué)生,并將調(diào)查結(jié)果繪制成圖1和圖2 的統(tǒng)計圖(不完整).請根據(jù)圖中提供的數(shù)據(jù)解答下列問題:
(1)求此次抽查的學(xué)生人數(shù);
(2)將圖2補充完整,并求圖1中的x;
(3)現(xiàn)有5名學(xué)生,其中A類型3名,B類型2名,從中任選2名學(xué)生參加體能測試,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法)

查看答案和解析>>

同步練習(xí)冊答案