【題目】已知:如圖所示,的直徑,上一點,平分,過

(1)求證:相切;

(2),,求的長;

(3)中點,過,若,,求的半徑.

【答案】(1)見解析; (2);(3)半徑

【解析】

1)連接OP,根據(jù)角平分線的性質(zhì)及圓的半徑相等的性質(zhì)得到,推出OPAN,根據(jù)即可得到OPPA,由此得到結(jié)論;

2)連接,根據(jù)勾股定理求出BM=16得到ME=8,再利用勾股定理求出OE=6,得到PE=4,即可利用勾股定理求出MP;

3)連接,設(shè)的交點為,根據(jù)設(shè),可求,根據(jù)角平分線的性質(zhì)及圓的半徑相等的性質(zhì)得到,推出PC=FC,根據(jù)求出x=2,即可得到半徑OP.

(1)證明:連接.

平分

,

,

,

,

,

相切;

(2)解:連接,

MN是直徑,

∴BM⊥BN,

OPBM,

.

,

,

,

;

(3)解:連接,設(shè)的交點為.

,

∴可設(shè),

.

,

,

,

,

,

.

∴半徑

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F,取EF的中點G,連接CGBG、DG,下列結(jié)論中錯誤的是(

A.BCDFB.DCG≌△BGCC.DFG≌△BCGD.ACBG1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是雙曲線在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為斜邊作等腰Rt△ABC,點C在第二象限,隨著點A的運動,點C的位置也不斷的變化,但始終在一函數(shù)圖象上運動,則這個函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4y軸交于點A,與x軸交于點B,直線y=kx+b經(jīng)過點A,且交x軸與點C(3,0)

1)求直線AC的函數(shù)表達(dá)式;

2)動點P在線段CB上由CB勻速運動,到達(dá)點B后停止運動,運動速度為3個單位長度,過點PPEx軸,交直線AC于點E,過點E作直線GEx軸交軸于點F,交直線AB于點G,設(shè)點P的運動時間為t(t0)秒.

①直接寫出線段PE的長度(用含t的代數(shù)式表示);

②當(dāng)EG=1時,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,點、是反比例函數(shù)圖象上的點,于點,

1)求直線的函數(shù)解析式及反比例函數(shù)的解析式;

2)若、、的面積分別為,,直接寫出,,的一個數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題引入:如圖1所示,正方形和正方形,則的數(shù)量關(guān)系是 , ;

(2)類比探究:如圖2所示,、的中點,正方形和正方形中,判斷的數(shù)量關(guān)系,并求出的值.

(3)解決問題:

①若把(1)中的正方形都改成矩形,且,則(1)中的結(jié)論還成立嗎?若不能成立,請寫出的關(guān)系,并求出的值;

②若把(2)中的正方形也都改成矩形,且,請直接寫出的關(guān)系以及的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線)的頂點為,對稱軸與軸交于點,當(dāng)以為對角線的正方形的另外兩個頂點、恰好在拋物線上時,我們把這樣的拋物線稱為美麗拋物線,正方形為它的內(nèi)接正方形.

1)當(dāng)拋物線是美麗拋物線時,則______;當(dāng)拋物線是美麗拋物線時,則______

2)若拋物線是美麗拋物線時,則請直接寫出,的數(shù)量關(guān)系;

3)若是美麗拋物線時,(2,的數(shù)量關(guān)系成立嗎?為什么?

4)系列美麗拋物線為小于的正整數(shù))頂點在直線上,且它們中恰有兩條美麗拋物線內(nèi)接正方形面積比為.求它們二次項系數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿9mB處安置高為1.5m的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若干名工人某天生產(chǎn)同一種玩具,生產(chǎn)的玩具數(shù)整理成條形圖(如圖所示).則他們生產(chǎn)的玩具數(shù)的平均數(shù)、中位數(shù)、眾數(shù)分別為( )

A.5,5,4 B.5,5,5

C.5,4,5 D.5,4,4

查看答案和解析>>

同步練習(xí)冊答案