精英家教網 > 初中數學 > 題目詳情
25、已知:如圖,AB=AE,AC=AD,BC=DE,C、D在邊BE上.求證:∠CAE=∠DAB.
分析:由AB=AE,AC=AD,BC=DE可得△ABC≌△AED,即可由其性質知∠CAB=∠DAE,即可得∠CAE=∠DAB.
解答:證明:∵AB=AE,AC=AD,BC=DE,
∴△ABC≌△AED(SSS),
∴∠CAB=∠DAE,
∴∠CAB+∠CAD=∠DAE+∠CAD,
即∠CAE=∠DAB.
點評:本題考查全等三角形的判定及其性質,是基礎題型.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點,∠D=40°,則∠A的度數等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,AB,CD相交于點O,且OA•OD=OB•OC,求證:AC∥DB.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過點C的⊙O的切線,AD⊥EF于點D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

29、已知,如圖,AB∥CD,∠EAB+∠FDC=180°.求證:AE∥FD.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,AB=AC,DB=DC,求證:∠B=∠C.

查看答案和解析>>

同步練習冊答案