【題目】如圖,為的內(nèi)接三角形,過點作的切線,交的延長線于,且.
(1)求證:
(2)若,,求的長度.
【答案】(1)證明見解析;(2)
【解析】
(1)連接AO并延長,交BC于點E,由切線得AE⊥AD,結合AD∥BC可得AE⊥BC,進而可證得AE垂直平分BC,利用垂直平分線的性質(zhì)即可得證;
(2)先證△BEO∽△DAO,得,進而可設OE=3k,則OA=OB=5k,再利用勾股定理可求得k的值,進而求得OE、OA,最后在Rt△AEC中利用勾股定理求得AC長即可.
(1)證明:如圖,連接AO并延長,交BC于點E,
∵AD與相切,
∴AE⊥AD,
∵AD∥BC,
∴AE⊥BC,
∴BE=CE,
∴AE垂直平分BC,
∴AB=AC;
(2)解:∵BC=8,
∴BE=CE=4,
∵AD∥BC,
∴△BEO∽△DAO,
∴
設OE=3k,則OA=OB=5k,
在Rt△BOE中,,
∴
解得k=1(舍負)
∴OE=3,OA=5,
∴AE=OE+OA=8,
在Rt△ACE中,
∴的長為
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以O為原點的直角坐標系中,點A,C分別在x軸、y軸的正半軸上,點B在第一象限內(nèi),四邊形OABC是矩形,反比例函數(shù)y=(x>0)與AB相交于點D,與BC相交于點E,若BE=4CE,四邊形ODBE的面積是8,則k=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是重慶輕軌10號線龍頭寺公園站入口扶梯建設示意圖.起初工程師計劃修建一段坡度為3:2的扶梯,扶梯總長為米.但這樣坡度大陡,扶梯太長容易引發(fā)安全事故.工程師修改方案:修建、兩段扶梯,并減緩各扶梯的坡度,其中扶梯和平臺形成的為135°,從點看點的仰角為36.5°,段扶梯長米,則段扶梯長度約為( )米(參考數(shù)據(jù):,,)
A.43B.45C.47D.49
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關系,如圖所示.
(1)求與之間的函數(shù)關系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的四個頂點分別在扇形OEF的半徑OE、OF和弧EF上,且點A是線段OB的中點,若弧EF的長為π,則OD長為______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學組織學生參加交通安全知識網(wǎng)絡測試活動.小華對九年(8)班全體學生的測試成績進行了統(tǒng)計,并將成績分為四個等級:優(yōu)秀、良好、一般、不合格,繪制成如下的統(tǒng)計圖(不完整),請你根據(jù)圖中所給的信息解答下列問題:
(1)九年(8)班有______名學生,并把折線統(tǒng)計圖補充完整;
(2)已知該市共有名中學生參加了這次交通安全知識測試,請你根據(jù)該班成績估計該市在這次測試中成績?yōu)閮?yōu)秀的人數(shù);
(3)小華查了該市教育網(wǎng)站發(fā)現(xiàn),全市參加本次測試的學生中,成績?yōu)閮?yōu)秀的有人,請你用所學統(tǒng)計知識簡要說明實際優(yōu)秀人數(shù)與估計人數(shù)出現(xiàn)較大偏差的原因.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠有甲種原料,乙種原料,現(xiàn)用兩種原料生產(chǎn)處兩種產(chǎn)品共件,已知生產(chǎn)每件產(chǎn)品需甲種原料,乙種原料,且每件產(chǎn)品可獲得元;生產(chǎn)每件產(chǎn)品甲種原料,乙種原料,且每件產(chǎn)品可獲利潤元,設生產(chǎn)產(chǎn)品 件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問題:
(1)生產(chǎn)兩種產(chǎn)品的方案有哪幾種?
(2)設生產(chǎn)這件產(chǎn)品可獲利元,寫出關于的函數(shù)解析式,寫出(1)中利潤最大的方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=mx2﹣(2m+1)x+2(m≠0),請判斷下列結論是否正確,并說明理由.
(1)當m<0時,函數(shù)y=mx2﹣(2m+1)x+2在x>1時,y隨x的增大而減小;
(2)當m>0時,函數(shù)y=mx2﹣(2m+1)x+2圖象截x軸上的線段長度小于2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com