【題目】如圖,,,,一個以點為頂點的角繞點旋轉(zhuǎn),角的兩邊與、交于點、,與、的延長線交于點、,連接.
(1)在旋轉(zhuǎn)的過程中,當(dāng)時,如圖1.求證:;
(2)在旋轉(zhuǎn)的過程中,當(dāng)時,如圖2,如果,,用等式表示線段、之間的數(shù)量關(guān)系,并證明.
【答案】(1)證明見解析;(2)AE·AF=2,證明見解析.
【解析】
(1)先證明△ABC≌△ADC,然后再證明△ACF≌△ACE即可得;
(2)過點C作CG⊥AB于點G,先求出AC的長,再證明△ACF∽△AEC,根據(jù)相似三角形的性質(zhì)即可得.
(1)∵AB=AD,BC=CD,AC=AC,∴△ABC≌△ADC,
∴∠BAC=∠DAC=45°,∴180°-∠BAC=180°-∠DAC,∴∠FAC=∠EAC=135°,
又∵∠FCA=∠ECA,AC=AC
∴△ACF≌△ACE,
∴AE=AF;
(2)AE·AF=2,證明如下:
過點C作CG⊥AB于點G,則∠BGC=∠AGC=90°,
∵∠B=30°,∴CG=BC=1,
∵∠BAC=45°,∴AC==
∵∠FAC=∠EAC=135°,∴∠ACF+∠F=45°,
又∵∠ACF+∠ACE=45°,∴∠F=∠ACE,
∴△ACF∽△AEC,
∴,
故AC= AE·AF
∴AE·AF=2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖①,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD是△ABC的完美分割線;
(2)如圖②,在△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量(輛/小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度(千米/小時)指通過道路指定斷面的車輛速度,密度(輛/千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù).
為配合大數(shù)據(jù)治堵行動,測得某路段流量與速度之間關(guān)系的部分數(shù)據(jù)如下表:
速度(千米/小時) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量(輛/小時) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根據(jù)上表信息,下列三個函數(shù)關(guān)系式中,刻畫,關(guān)系最準確的是____.(只填上正確答案的序號)
①;②;③.
(2)請利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速度為多少時,流量達到最大?最大流量是多少?
(3)已知滿足.請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題.
①市交通運行監(jiān)控平臺顯示,當(dāng)時道路出現(xiàn)輕度擁堵.試分析當(dāng)車流密度在什么范圍時,該路段將出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離(米)均相等,求流量最大時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸交于點A,與y軸交于點B,過點B的直線交x軸于C,且面積為10.
(1)求點C的坐標及直線BC的解析式;
(2)如圖1,設(shè)點F為線段AB中點,點G為y軸上一動點,連接FG,以FG為邊向FG右側(cè)作正方形FGQP,在G點的運動過程中,當(dāng)頂點Q落在直線BC上時,求點G的坐標;
(3)如圖2,若M為線段BC上一點,且滿足,點E為直線AM上一動點,在x軸上是否存在點D,使以點D、E、B、C為頂點的四邊形為平行四邊形?若存在,請直接寫出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,拋物線的表達式為,線段AB的兩個端點分別為A(1,2),B(3,2)
(1)若拋物線經(jīng)過原點,求出的值;
(2)求拋物線頂點C的坐標(用含有m的代數(shù)式表示);
(3)若拋物線與線段AB恰有一個公共點,結(jié)合函數(shù)圖象,求出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(0,6),點B(4,3),P是x軸上的一個動點.作OQ⊥AP,垂足為Q,則點Q到直線AB的距離的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營某種品牌的計算器,購進時的單價是20元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是30元時,銷售量是600個,而銷售單價每上漲1元,就會少售出10個.
(1)不妨設(shè)該種品牌計算器的銷售單價為x元(x>30),請你分別用x的代數(shù)式來表示銷售量y個和銷售該品牌計算器獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x(x>30) |
銷售量y(個) |
|
銷售計算器獲得利潤w(元) |
|
(2)在第(1)問的條件下,若計算器廠規(guī)定該品牌計算器銷售單價不低于35元,且商場要完成不少于500個的銷售任務(wù),求:商場銷售該品牌計算器獲得最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠B=90°,點D為線段BC上一個動點(不與點B,C重合),連接AD,將線段AD繞點D順時針旋轉(zhuǎn)90°得到線段DE,連接EC.
(1)①依題意補全圖1;
②求證:∠EDC=∠BAD;
(2)①小方通過觀察、實驗,提出猜想:在點D運動的過程中,線段CE與BD的數(shù)量關(guān)系始終不變,用等式表示為 ;
②小方把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:過點E作EF⊥BC,交BC延長線于點F,只需證△ADB≌△DEF.
想法2:在線段AB上取一點F,使得BF=BD,連接DF,只需證△ADF≌△DEC.
想法3:延長AB到F,使得BF=BD,連接DF,CF,只需證四邊形DFCE為平行四邊形.
……
請你參考上面的想法,幫助小方證明(2)①中的猜想.(一種方法即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com