【題目】敘述并證明三角形內(nèi)角和定理.

三角形內(nèi)角和定理: ;

已知:如圖ABC.

求證: .

證明:

【答案】三角形的內(nèi)角和是180°;∠A+B+C=180°;證明見解析.

【解析】

要證明三角形的三個內(nèi)角的和為180°,可以把三角形三個角轉(zhuǎn)移到一個平角上,利用平角的性質(zhì)解答.

解:定理:三角形的內(nèi)角和是180°;

已知:如圖ABC;

求證:∠A+B+C=180°.

證明:過點作直線MN,使MN//BC.

MNBC,

∴∠B=MAB,∠C=NAC(兩直線平行,內(nèi)錯角相等)

又∵∠MAB+NAC+BAC=180°(平角定義)

∴∠B+C+BAC=180°(等量代換)即∠A+B+C=180°.

故答案為:三角形的內(nèi)角和是180°;∠A+B+C=180°;證明見解析.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).

(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1

(2)把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,得到△A1B2C2,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2.

(3)連結(jié),請判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的一元二次方程

⑴說明該方程根的情況.

⑵若為整數(shù)),且方程有兩個整數(shù)根,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,四邊形OABC為矩形,OA在x軸正半軸上,OC在y軸正半軸上,且A(10,0)、C(0,8)

(1)如圖1,在矩形OABC的邊AB上取一點E,連接OE,將△AOE沿OE折疊,使點A恰好落在BC邊上的F處,求AE的長;

(2)將矩形OABC的AB邊沿x軸負方向平移至MN(其它邊保持不變),M、N分別在邊OA、CB上且滿足CN=OM=OC=MN.如圖2,P、Q分別為OM、MN上一點.若∠PCQ=45°,求證:PQ=OP+NQ;

(3)如圖3,S、G、R、H分別為OC、OM、MN、NC上一點,SR、HG交于點D.若∠SDG=135°,HG=4,求RS的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和揭示了三角形的一個外角與它的兩個內(nèi)角之間的數(shù)量關(guān)系,請?zhí)剿鞑懗鋈切螞]有公共頂點的兩個外角與它的第三個內(nèi)角之間的關(guān)系:_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】低碳環(huán)保,你我同行.兩年來,揚州市區(qū)的公共自行車給市民出行帶來切實方便.電視臺記者在某區(qū)街頭隨機選取了市民進行調(diào)查,調(diào)查的問題是您大概多久使用一次公共自行車?,將本次調(diào)查結(jié)果歸為四種情況:A.每天都用;B.經(jīng)常使用;C.偶爾使用;D.從未使用.將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計圖如圖2:

根據(jù)圖中的信息,解答下列問題:

(1)本次活動共有      位市民參與調(diào)查;

(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中A項所對應(yīng)的圓心角的度數(shù)為      

(4)根據(jù)統(tǒng)計結(jié)果,若該區(qū)有46萬市民,請估算每天都用公共自行車的市民約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七(1)班體育委員統(tǒng)計了全班同學60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:

次數(shù)

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

頻數(shù)

a

4

12

16

8

3

結(jié)合圖表完成下列問題:

1a= ,全班人數(shù)是______;

2)補全頻數(shù)分布直方圖;

3)若跳繩次數(shù)不少于140的學生成績?yōu)閮?yōu)秀,則優(yōu)秀學生人數(shù)占全班總?cè)藬?shù)的百分之幾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y1=ax2+bx+ca≠0)和一次函數(shù)y2=kx+nk≠0)的圖象如圖所示,下面有四個推斷:

①二次函數(shù)y1有最大值;

②二次函數(shù)y1的圖象關(guān)于直線x=﹣1對稱

③當x=﹣2時,二次函數(shù)y1的值大于0

④過動點Pm,0)且垂直于x軸的直線與y1,y2的圖象的交點分別為CD,當點C位于點D上方時,m的取值范圍是m﹣3m﹣1

以上推斷正確的是( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形,對角線交于點,點分別是的中點,連接,連接

1)證明:四邊形是平行四邊形

2)點是哪些線段的中點,寫出結(jié)論,并選擇一組給出證明.

查看答案和解析>>

同步練習冊答案