【題目】某次大型活動,組委會啟用無人機航拍活動過程,在操控無人機時應根據(jù)現(xiàn)場狀況調節(jié)高度,已知無人機在上升和下降過程中速度相同,設無人機的飛行高度為y(米),操控無人機的時間為x(分),y與x之間的函數(shù)圖像如圖所示.
(1)無人機的速度為________米/分;
(2)求線段BC所表示的y與x之間函數(shù)表達式;
(3)無人機在50米上空持續(xù)飛行時間為_________分.(直接填結果)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=9,AB=12,BC=15,P為BC邊上一動點,PG⊥AC于點G,PH⊥AB于點H.
(1)求證:四邊形AGPH是矩形;
(2)在點P的運動過程中,GH的長度是否存在最小值?若存在,請求出最小值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=x﹣1交于A、B兩點.點A的橫坐標為﹣3,點B在y軸上,點P是y軸左側拋物線上的一動點,橫坐標為m,過點P作PC⊥x軸于C,交直線AB于D.
(1)求拋物線的解析式;
(2)當m為何值時,S四邊形OBDC=2S△BPD;
(3)是否存在點P,使△PAD是直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次禁毒宣傳活動中,某執(zhí)勤小組乘車沿東西向公路進行安全維護,如果約定向東為正,向西為負,行駛記錄如下(單位:米):+18,-9,+7,-14,-3,+13,-8,-6,+15,+6.
(1)執(zhí)勤過程中,最遠處離出發(fā)點有多遠?
(2)若汽車行駛每千米耗油量為升,求這次執(zhí)勤的汽車共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學計劃購進若干個甲種規(guī)格的排球和乙種規(guī)格的足球. 如果購買20個甲種規(guī)格的排球和15個乙種規(guī)格的足球,一共需要花費2050元;如果購買10個甲種規(guī)格的排球和20個乙種規(guī)格的足球,一共需要花費1900元。
(1)求每個甲種規(guī)格的排球和每個已匯總規(guī)格的足球的價格分別是多少元?
(2)如果學校要購買甲種規(guī)格的排球和乙種規(guī)格的足球共50個,并且預算總費用不超過3080元,那么該學校至多能購買多少個乙種規(guī)格的足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:頂點、開口大小相同,開口方向相反的兩個二次函數(shù)互為“反簇二次函數(shù)”.
(1)已知二次函數(shù)y=﹣(x﹣2)2+3,則它的“反簇二次函數(shù)”是__________________;
(2)已知關于x的二次函數(shù)y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的圖像經過點(1,1).若y1+y2與y1互為“反簇二次函數(shù)”.求函數(shù)y2的表達式,并直接寫出當0≤x≤3時,y2的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市園林處為了對一段公路進行綠化,計劃購買,兩種風景樹共900棵.,兩種樹的相關信息如下表:
品種 項目 | 單價(元棵) | 成活率 |
80 | ||
100 |
若購買種樹棵,購樹所需的總費用為元.
(1)求與之間的函數(shù)關系式;
(2)若購樹的總費用不超過82 000元,則購種樹不少于多少棵?
(3)若希望這批樹的成活率不低于,且使購樹的總費用最低,應選購,兩種樹各多少棵?此時最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,AB=BC,以AB為直徑作 ,交BC于點D,交AC于E,過點E作切線EF,交BC于F.
(1)求證:EF⊥BC;
(2)若CD=2,tanC=2,求的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小馬虎做一道數(shù)學題,“已知兩個多項式,,試求.”其中多項式的二次項系數(shù)印刷不清楚.
(1)小馬虎看答案以后知道,請你替小馬虎求出系數(shù)“”;
(2)在(1)的基礎上,小馬虎已經將多項式正確求出,老師又給出了一個多項式,要求小馬虎求出的結果.小馬虎在求解時,誤把“”看成“”,結果求出的答案為.請你替小馬虎求出“”的正確答案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com