【題目】在平面直角坐標系中,拋物線y= x2 x﹣2與x軸交與A,B兩點(點B在點A的右側(cè)),與y軸交于點C,點D與點C關于x軸對稱,連接BD

(1)求點A,B,C的坐標.
(2)當點P時x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線l,交拋物線于點M,交直線BD于點N
①當點P在線段OB上運動時(不與O、B重合),求m為何值時,線段MN的長度最大,并說明此時四邊形DCMN是否為平行四邊形
②當點P的運動過程中,是否存在點M,使△BDM是以BD為直角邊的直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

【答案】
(1)

解:在y= x2 x﹣2中,令y=0可得0= x2 x﹣2,解得x=﹣1或x=4,

∴A(﹣1,0),B(4,0),

在y= x2 x﹣2中,令x=0可得y=﹣2,

∴C(0,﹣2);


(2)

①∵D與C關于x軸對稱,

∴D(0,2),且B(4,0),

∴可設直線BD解析式為y=kx+2,把B點坐標代入可得4k+2=0,解得k=﹣

∴直線BD解析式為y=﹣ x+2,

∵P(m,0),

∴N(m,﹣ m+2),M(m, m2 m﹣2),

∵P在線段OB上,

∴M在x軸下方,

∴MN=﹣ m+2﹣( m2 m﹣2)=﹣ m2+m+4=﹣ (m﹣1)2+ ,

∵﹣ <0,

∴當m=1時,MN有最大值,最大值為 ,

∵CD=4≠MN,

∴四邊形DCMN不是平行四邊形;

②∵點P在線段OB上運動,

∴點M在第四象限,

∴∠MDB≠90°,

當△BDM是以BD為直角邊的直角三角形時,只有MB⊥BD,如圖,

設P(m,0),則M(m, m2 m﹣2),且B(4,0),D(0,2),

∴BP=4﹣m,PM=﹣ m2+ m+2,OB=4,OD=2,

∵∠MBD=90°,

∴∠OBD+∠PBM=∠ODB+∠OBD=90°,

∴∠ODB=∠PMB,

∴△OBD∽△PMB,

= ,即 = ,解得m=3或m=4(舍去),

∴M點坐標為(3,﹣2).


【解析】(1)利用拋物線解析式容易求得A、B、C的坐標;(2)①可求得直線BD的解析式,利用m可表示出MN的長,則可利用二次函數(shù)的性質(zhì)求得MN的最大值,再判斷MN與CD是否相等即可;②由題意可知只能BM⊥BD,可設出M點的坐標,從而可表示出BP和MP的長,利用△OBD∽△PMB,可得到關于M點坐標的方程,從而可求得M點的坐標.
【考點精析】解答此題的關鍵在于理解二次函數(shù)的性質(zhì)的相關知識,掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小,以及對平行四邊形的判定與性質(zhì)的理解,了解若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AO=10,AB=8,分別以OC、OA所在的直線為x軸,y軸建立平面直角坐標系,點D(3,10)、E(0,6),拋物線y=ax2+bx+c經(jīng)過O,D,C三點.

(1)求拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使四邊形MENC是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校志愿者團隊在重陽節(jié)購買了一批牛奶到“夕陽紅”敬老院慰問孤寡老人,如果給每個老人分5盒,則剩下38盒,如果給每個老人分6盒,則最后一個老人不足5盒,但至少分得一盒.
(1)設敬老院有x名老人,則這批牛奶共有多少盒?(用含x的代數(shù)式表示).
(2)該敬老院至少有多少名老人?最多有多少名老人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一根40cm的金屬棒,欲將其截成x根7cm的小段和y根9cm的小段,剩余部分作廢料處理,若使廢料最少,則正整數(shù)x,y應分別為(
A.x=1,y=3
B.x=4,y=1
C.x=3,y=2
D.x=2,y=3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“清明節(jié)”前夕,某花店用6000元購進若干花籃,上市后很快售完,接著又用7500元購進第二批同樣的花籃.已知第二批所購的數(shù)量是第一批數(shù)量的1.5倍,且每個花藍的進價比第一批的進價少5元,求第一批花籃每個進價是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮用6張背面完全相同的紙牌進行摸牌游戲,游戲規(guī)則如下:將牌面分別標有數(shù)字1、3、6的三張紙牌給小明,將牌面分別標有數(shù)字2、4、5的三張紙牌給小亮,小明小亮分別將紙牌背面朝上,從各自的三張紙牌中隨機抽出一張,并將抽出的兩張卡片上的數(shù)字相加,如果和為偶數(shù),則小明獲勝;如果和為奇數(shù),則小亮獲勝.
(1)小明抽到標有數(shù)字6的紙牌的概率為
(2)請用樹狀圖或列表的方法求小亮獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列一組圖形,其中圖形①中共有2顆星,圖形②中共有6顆星,圖形③中共有11顆星,圖形④中共有17顆星,…,按此規(guī)律,圖形⑧中星星的顆數(shù)是( )

A.43
B.45
C.51
D.53

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=2,E為BC中點,兩個動點M和N分別在邊CD和AD上運動且MN=1,若△ABE與以D、M、N為頂點的三角形相似,則DM=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別是可活動的菱形和平行四邊形學具,已知平行四邊形較短的邊與菱形的邊長相等.

(1)在一次數(shù)學活動中,某小組學生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點C,連接DE交AF于點M,觀察發(fā)現(xiàn):點M是DE的中點.
下面是兩位學生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求 的值;
(3)在(2)的條件下,若 =k(k為大于 的常數(shù)),直接用含k的代數(shù)式表示 的值.

查看答案和解析>>

同步練習冊答案