【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
【答案】
(1)證明:在正方形ABCD中,
∵ ,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)解:GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°.
∵ ,
∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
【解析】(1)由DF=BE,四邊形ABCD為正方形可證△CEB≌△CFD,從而證出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可證得△ECG≌△FCG,即EG=FG=GD+DF.又因?yàn)镈F=BE,所以可證出GE=BE+GD成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=6,OB=8,OC=10,以B為旋轉(zhuǎn)中心,將線段BO逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,連接AO′.則下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)60°得到;②連接OO′,則OO′=8;③∠AOB=150°;④ 其中正確的有( )
A.①②
B.①②③
C.①②④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)有四個(gè)點(diǎn)A,B,C,D,過(guò)其中每?jī)蓚(gè)點(diǎn)畫直線可以畫出直線的條數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E,F(xiàn)分別在BC和CD上,下列結(jié)論: ①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .
其中正確的序號(hào)是(把你認(rèn)為正確的都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形的周長(zhǎng)為20cm,兩個(gè)相鄰的內(nèi)角的度數(shù)之比為1:2,則較長(zhǎng)的對(duì)角線的長(zhǎng)度是( )
A.20 cm
B.5 cm
C. ?cm
D.5 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n滿足等式(m﹣8)2+2|n﹣m+5|=0.
(1)求m,n的值;
(2)已知線段AB=m,在直線AB上取一點(diǎn)P,恰好使AP=nPB,點(diǎn)Q為PB的中點(diǎn),求線段AQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB為銳角,如圖(1).
(1)若OM平分∠AOC,ON平分∠BOD,∠MON=32°,∠COD=10°,如圖(2)所示,求∠AOB的度數(shù).
(2)若OM,OD,OC,ON是∠AOB的五等分線,如圖(3)所示,以射線OA,OM,OD,OC,ON,OB為始邊的所有角的和為980°,求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過(guò)點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于Q.
(1)如圖①,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當(dāng)點(diǎn)Q落在DC的延長(zhǎng)線上時(shí),猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com