【題目】如圖1,將一個(gè)正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個(gè)正方形繞其中心最少旋轉(zhuǎn) 45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長(zhǎng)為,則所得正八邊形的面積為_______.
圖1 圖2
【答案】
【解析】
根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個(gè)全等的等腰直角三角形,設(shè)等腰直角三角形的邊長(zhǎng)為x,則正八邊形的邊長(zhǎng)為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個(gè)等腰直角三角形的面積即可.
解:由題意得:正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;則將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)所得圖形與原圖的重疊部分是正多邊形;
由題意得:旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個(gè)全等的等腰直角三角形,
設(shè)等腰直角三角形的邊長(zhǎng)為x,則正八邊形的邊長(zhǎng)為x
∴x+x+x=4,解得x=4-2
∴減去的每個(gè)等腰直角三角形的面積為:
∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積
=4×4-4()
=.
故答案為,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線的頂點(diǎn)為M,平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱△AMB為該拋物線的“完美三角形”.如圖2,則拋物線y=x的“完美三角形”斜邊AB的長(zhǎng)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校了解九年級(jí)學(xué)生近兩個(gè)月“推薦書(shū)目”的閱讀情況,隨機(jī)抽取了該年級(jí)的部分學(xué)生,調(diào)查了他們每人“推薦書(shū)目”的閱讀本數(shù).設(shè)每名學(xué)生的閱讀本數(shù)為n,并按以下規(guī)定分為四檔:當(dāng)n<3時(shí),為“偏少”;當(dāng)3≤n<5時(shí),為“一般”;當(dāng)5≤n<8時(shí),為“良好”;當(dāng)n≥8時(shí),為“優(yōu)秀”.將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成不完整的統(tǒng)計(jì)圖表:
閱讀本數(shù)n(本) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
人數(shù)(名) | 1 | 2 | 6 | 7 | 12 | x | 7 | y | 1 |
請(qǐng)根據(jù)以上信息回答下列問(wèn)題:
(1)分別求出統(tǒng)計(jì)表中的x、y的值;
(2)估計(jì)該校九年級(jí)400名學(xué)生中為“優(yōu)秀”檔次的人數(shù);
(3)從被調(diào)查的“優(yōu)秀”檔次的學(xué)生中隨機(jī)抽取2名學(xué)生介紹讀書(shū)體會(huì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求抽取的2名學(xué)生中有1名閱讀本數(shù)為9的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,∠DCA=30°,點(diǎn)F是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連接DF,以DF為斜邊作∠DFE=30°的直角三角形DEF,使點(diǎn)E和點(diǎn)A位于DF兩側(cè),點(diǎn)F從點(diǎn)A到點(diǎn)C的運(yùn)動(dòng)過(guò)程中,點(diǎn)E的運(yùn)動(dòng)路徑長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)H且與y軸平行的直線與BC,CE分別相交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo);
(3)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長(zhǎng)最小,求出點(diǎn)P,Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃投資、兩種產(chǎn)品,若只投資產(chǎn)品,所獲得利潤(rùn)(萬(wàn)元)與投資金額(萬(wàn)元)之間的關(guān)系如圖所示,若只投資產(chǎn)品,所獲得利潤(rùn)(萬(wàn)元)與投資金額(萬(wàn)元)的函數(shù)關(guān)系式為.
(1)求與之間的函數(shù)關(guān)系式;
(2)若投資產(chǎn)品所獲得利潤(rùn)的最大值比投資產(chǎn)品所獲得利潤(rùn)的最大值少萬(wàn)元,求的值;
(3)該公司籌集萬(wàn)元資金,同時(shí)投資、兩種產(chǎn)品,設(shè)投資產(chǎn)品的資金為萬(wàn)元,所獲得的總利潤(rùn)記作萬(wàn)元,若時(shí),隨的增大而減少,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解學(xué)生關(guān)注熱點(diǎn)新聞的情況,“兩會(huì)”期間,小明對(duì)班級(jí)同學(xué)一周內(nèi)收看“兩會(huì)”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如圖所示(其中男生收看次的人數(shù)沒(méi)有標(biāo)出).
根據(jù)上述信息,解答下列各題:
×
(1)該班級(jí)女生人數(shù)是__________,女生收看“兩會(huì)”新聞次數(shù)的中位數(shù)是________;
(2)對(duì)于某個(gè)群體,我們把一周內(nèi)收看某熱點(diǎn)新聞次數(shù)不低于次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對(duì)某熱點(diǎn)新聞的“關(guān)注指數(shù)”.如果該班級(jí)男生對(duì)“兩會(huì)”新聞的“關(guān)注指數(shù)”比女生低,試求該班級(jí)男生人數(shù);
(3)為進(jìn)一步分析該班級(jí)男、女生收看“兩會(huì)”新聞次數(shù)的特點(diǎn),小明給出了男生的部分統(tǒng)計(jì)量(如表).
統(tǒng)計(jì)量 | 平均數(shù)(次) | 中位數(shù)(次) | 眾數(shù)(次) | 方差 | … |
該班級(jí)男生 | … |
根據(jù)你所學(xué)過(guò)的統(tǒng)計(jì)知識(shí),適當(dāng)計(jì)算女生的有關(guān)統(tǒng)計(jì)量,進(jìn)而比較該班級(jí)男、女生收看“兩會(huì)”新聞次數(shù)的波動(dòng)大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=5,點(diǎn)E在DC上,將矩形ABCD沿AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,那么sin∠EFC的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知A(0,1),B(10,1),C(9,4).
(1)在網(wǎng)格中畫(huà)出過(guò)A、B、C三點(diǎn)的圓和直線的圖像;
(2)已知P是直線上的點(diǎn),且△APB是直角三角形,那么符合條件的點(diǎn)P共有 個(gè);
(3)如果直線(k>0)上有且只有二個(gè)點(diǎn)Q與點(diǎn)A、點(diǎn)B兩點(diǎn)構(gòu)成直角△ABQ,則k= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com