【題目】如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別相交于點F,G,試探究當點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標;
(3)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標.
【答案】(1)y=x2﹣4x﹣5;(2)H(,﹣);(3)P(,0),Q(0,﹣)
【解析】
(1)根據(jù)待定系數(shù)法直接確定出拋物線解析式;
(2)先求出直線BC的解析式,進而求出四邊形CHEF的面積的函數(shù)關系式,即可求出;
(3)利用對稱性找出點P,Q的位置,進而求出P,Q的坐標.
(1)∵點A(﹣1,0),B(5,0)在拋物線y=ax2+bx﹣5上,
∴,
解得,
∴拋物線的表達式為y=x2﹣4x﹣5,
(2)設H(t,t2﹣4t﹣5),
∵CE∥x軸,
∴點E的縱坐標為﹣5,
∵E在拋物線上,
∴x2﹣4x﹣5=﹣5,
∴x=0(舍)或x=4,
∴E(4,﹣5),
∴CE=4,
∵B(5,0),C(0,﹣5),
∴直線BC的解析式為y=x﹣5,
∴F(t,t﹣5),
∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,
∵CE∥x軸,HF∥y軸,
∴CE⊥HF,
∴S四邊形CHEF=CEHF=﹣2(t﹣)2+,
∴H(,﹣);
(3)如圖2,
∵K為拋物線的頂點,
∴K(2,﹣9),
∴K關于y軸的對稱點K'(﹣2,﹣9),
∵M(4,m)在拋物線上,
∴M(4,﹣5),
∴點M關于x軸的對稱點M'(4,5),
∴直線K'M'的解析式為y=,
∴P(,0),Q(0,﹣).
科目:初中數(shù)學 來源: 題型:
【題目】在“書香八桂,閱讀圓夢”讀書活動中,某中學設置了書法、國學誦讀、演講、征文四個比賽項目(每人只參加一個項目),九(2)班全班同學都參加了比賽,該班班長為了了解本班同學參加各項比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2),根據(jù)圖表中的信息解答下列各題:
(1)請求出九(2)全班人數(shù);
(2)請把折線統(tǒng)計圖補充完整;
(3)南南和寧寧參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項目相同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.
(1)求證:AB是☉O的切線;
(2)若∠A=60°,DF=,求☉O的直徑BC的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工廠需加工生產(chǎn) 550 臺某種機器,已知甲工廠每天加工生產(chǎn)的機器臺數(shù)是乙工廠每天加工 生產(chǎn)的機器臺數(shù)的 1.5 倍,并且加工生產(chǎn) 240 臺這種機器甲工廠需要的時間比乙工廠需要的時間少 4 天
(1)求甲、乙兩個工廠每天分別可以加工生產(chǎn)多少臺這種機器?
(2)若甲工廠每天加工的生產(chǎn)成本是 3 萬元,乙工廠每天加工生產(chǎn)的成本是 2.4 萬元,要使得加工生 產(chǎn)這批機器的總成本不得高于 60 萬元,至少應該安排甲工廠生產(chǎn)多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極參與鄂州市全國文明城市創(chuàng)建活動,我市某校在教學樓頂部新建了一塊大型宣傳牌,如下圖.小明同學為測量宣傳牌的高度,他站在距離教學樓底部處6米遠的地面處,測得宣傳牌的底部的仰角為,同時測得教學樓窗戶處的仰角為(、、、在同一直線上).然后,小明沿坡度的斜坡從走到處,此時正好與地面平行.
(1)求點到直線的距離(結果保留根號);
(2)若小明在處又測得宣傳牌頂部的仰角為,求宣傳牌的高度(結果精確到0.1米,,).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將一個正三角形繞其中心最少旋轉,所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉 45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】河南省開封市鐵塔始建于公元1049年(北宋皇祐元年),是國家重點保護文物之一,在900多年中,歷經(jīng)了數(shù)次地震、大風、水患而巍然屹立,素有“天下第一塔”之稱.如圖,小明在鐵塔一側的水平面上一個臺階的底部A處測得塔頂P的仰角為45°,走到臺階頂部B處,又測得塔頂P的仰角為38.7°,已知臺階的總高度BC為3米,總長度AC為10米,試求鐵塔的高度.(結果精確到1米,參考數(shù)據(jù):sin38.7°≈0.63,cos38.7°≈0.78,tan38.7°≈0.80)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣3,0),C(2,0),將△ABC繞點B順時針旋轉一定角度后使A落在y軸上,與此同時頂點C恰好落在y=的圖象上,則k的值為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com