分析:(1)把246化成123×2,分子321963化成321×1003,分母化成123×1003,即可簡算,
(2)我們運用商不變的性質(zhì),被除數(shù)與除數(shù)同時乘以72,然后再運用乘法的分配律進行計算即可.
(3)把2004×4化成2004×3+2004,運用乘法分配律簡算,
(4)通過觀察發(fā)現(xiàn),此數(shù)列以100呈對稱排列,所以運用高斯求和公式,先求出(1+2+3+4+…+99)×2的和,然后再加上100即可.
解答:解:(1)246×
,
=123×2×
,
=2×321,
=642;
(2)(
+
+
+
+
)÷(
+
+
+
+
),
=[72×(
+
+
+
+
)]÷[72×(
+
+
+
+
)],
=[72×
+72×
+72×
+72×
+72×
)]÷[72×
+72×
+72×
+72×
+72×
)],
=[24+12+8+6+3]÷[36+18+9+4+2],
=53÷69,
=
;
(3)2004×4+97×2004,
=2004+2004×3+97×2004,
=2004+2004×(3+97),
=2004+2004×100,
=2004+200400,
=202404;
(4)1+2+3+4+…+99+100+99+…+4+3+2+1,
=(1+99)×99÷2×2+100,
=100×99+100,
=9900+100,
=10000;
點評:完成此類題目要認真分析式中數(shù)據(jù),根據(jù)式中數(shù)據(jù)的特點選擇合適的方法進行簡算.