在一個底面周長是62.8cm的圓柱形杯中裝一些水,把一個底面半徑5cm的圓錐形鉛錘完全浸入水中.水面上升0.5cm,求鉛錘的高.
解:62.8÷3.14÷2=10(cm),
3.14×102×0.5,
=314×0.5,
=157(立方厘米),
157×3÷(3.14×52),
=471÷78.5,
=60(厘米),
答:鉛錘的高是60厘米.
分析:先求出圓柱的底面周長,根據題意知道圓柱形水桶的水面上升的0.5cm的水的體積就是圓錐形鉛錐的體積,由此再根據圓錐的體積公式的變形,h=3V÷s,即可求出鉛錐的高
點評:此題主要考查了圓柱與圓錐的體積公式的靈活應用.