分析:算式①可根據(jù)一個數(shù)減兩個數(shù)的和等于用這個數(shù)分別減這兩個數(shù)的減法性質(zhì)與交換律進行簡便計算;
算式②④可根據(jù)乘法分配律進行簡便計算;
算式③⑤根據(jù)四則混合運算的運算順序計算即可:先算乘除,再算加減,有括號的要先算括號里面的;
解答:解:①8
-(2
+3
)
=
8-
3-2
,
=5-2
,
=2
;
②2.5÷8+3.5×
+0.125
=2.5×
+3.5×
+
,
=(2.5+3.5+1)×
=7×
=
;
③4.8-4.248÷(1.2+3
×1
)
=.8-4.248÷(1.2+
×),
=4.8-4.248÷(1.2+6),
=4.8-4.248÷7.2,
=4.8-0.59,
=4.21;
④6.5×
+5.5÷1
,
=6.5×
+5.5×
,
=(6.5+5.5)×
,
=12×
,
=7;
⑤[5
-1.2×(
+1.5)]÷37
=[55.8-1.2×(0.25+1.5)]÷37,
=[5.8-1.2×1.75]÷37,
=[5.8-2.1]÷37,
=3.7÷37,
=0.1.
點評:當算式中同時含有分數(shù)與小數(shù)時,要根據(jù)式中數(shù)據(jù)的特點靈活將它們互化后再進行計算.