有一列數(shù):
1
1
,
1
2
,
2
2
,
1
3
,
2
3
,
3
3
,
1
4
,
2
4
3
4
,
4
4
,…那么
9
10
是其中第
44
44
個數(shù).
分析:觀察給出的數(shù)列知道分母是1的數(shù)有1個,分母是2的分數(shù)有2個,分母是3的分數(shù)有3個,分母是4的分數(shù)有4個…那么分母是10的分數(shù)有10個,求出一共有幾個分數(shù)再減去1即可.
解答:解:S10=[10×(10+1)]÷2,
=90÷2,
=45,
所以
9
10
是其中的第45-1=44個分數(shù),
故答案為:44.
點評:解答此題的關鍵是,觀察給出的數(shù)列,找出規(guī)律,得出分母是n的分數(shù)的個數(shù),即可得出答案.
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:

有一列數(shù)
1
1
,
2
2
,
1
2
,
3
3
,
2
3
1
3
,
4
4
3
4
,
2
4
…,這列數(shù)中的第150個分數(shù)是
4
17
4
17

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:071

葉序現(xiàn)象與斐波那契數(shù)列

  你吃過菠蘿么?仔細觀察菠蘿果實的排列狀況,就會發(fā)現(xiàn)它們形成一種螺旋結構。使人驚異的是,這種排列的現(xiàn)象在植物的葉、鱗片、花等部分,幾乎到處可見。

  再進一步研究一下這些排列的狀況,它們通常是以順時針方向或逆時針方向螺旋形層層排列的。如果數(shù)一下其中順時針和逆時針排列的層數(shù),就可發(fā)現(xiàn)這兩個數(shù)是位于斐波那契數(shù)列中相鄰的兩個數(shù)。

  什么是斐波那契數(shù)列?斐波那契(1170-1240)是一位意大利的數(shù)學家。他在所寫的《算盤書》一書中,提出了下面的問題。

  “有小兔子一對,如果它們第二個月成年,第三個月生下一對小兔,以后,每月生產(chǎn)小兔一對,而所生的小兔亦在第二個月成年,第三個月生產(chǎn)另一對小兔,此后也每個月生一對小兔。則一年后共有多少對兔子?(假設每產(chǎn)一對兔子必為一雌一雄,而所有兔子都可以相互交配,并且沒有死亡。)

  分析:

  這樣推算下去,每個月所生的兔子數(shù)可以排成下面的數(shù)列:

  1,12,35,813,21,34,55,89144……

  我們把這一列數(shù)稱為斐波那契數(shù)列。研究一下這一列數(shù)的規(guī)律,從第三項起每一個數(shù)都是排在它前面兩個數(shù)的和。如

  2=11,3=12,5=23,8=35,13=58,21=813,…

  斐波那契數(shù)列可以無限地寫下去。設表示其中的第n項,那么

  

  比如,我們上面排出的第11項是89,第12項是144,那么第13項應該是

  

以下各項依序是

  

  

  

  …   …    …

  生物學家研究了花序中小花排列的螺旋數(shù),一般順時針方向為21,逆時針方向為34,恰恰是斐波那契數(shù)列中的。又如向日葵花序中小花或籽粒的排列,順時針螺旋數(shù)與逆時針螺旋數(shù)之比一般是1221()3455(),89144(),在一些大型樣本中,這個比值甚至為144233()。同樣,生物學家研究了各種菠蘿球形花的鱗片順、逆時針的螺旋數(shù),一般總是落在斐波那契數(shù)列3,5,813相鄰的兩數(shù)中。

  為什么不同的植物都具有類似的螺旋?為什么這些螺旋圈數(shù)總是相鄰的斐波那契數(shù)?兔子的繁衍與植物的花序之間為什么會有這樣的聯(lián)系,這些問題至今尚未得到令人滿意的解答。目前,科學家們一般認為,對植物來說,斐波那契葉序是最節(jié)約能量的。

查看答案和解析>>

科目:小學數(shù)學 來源:數(shù)學教研室 題型:072

葉序現(xiàn)象與斐波那契數(shù)列

  你吃過菠蘿么?仔細觀察菠蘿果實的排列狀況,就會發(fā)現(xiàn)它們形成一種螺旋結構。使人驚異的是,這種排列的現(xiàn)象在植物的葉、鱗片、花等部分,幾乎到處可見。

  再進一步研究一下這些排列的狀況,它們通常是以順時針方向或逆時針方向螺旋形層層排列的。如果數(shù)一下其中順時針和逆時針排列的層數(shù),就可發(fā)現(xiàn)這兩個數(shù)是位于斐波那契數(shù)列中相鄰的兩個數(shù)。

  什么是斐波那契數(shù)列?斐波那契(1170-1240)是一位意大利的數(shù)學家。他在所寫的《算盤書》一書中,提出了下面的問題。

  “有小兔子一對,如果它們第二個月成年,第三個月生下一對小兔,以后,每月生產(chǎn)小兔一對,而所生的小兔亦在第二個月成年,第三個月生產(chǎn)另一對小兔,此后也每個月生一對小兔。則一年后共有多少對兔子?(假設每產(chǎn)一對兔子必為一雌一雄,而所有兔子都可以相互交配,并且沒有死亡。)

  分析:

  這樣推算下去,每個月所生的兔子數(shù)可以排成下面的數(shù)列:

  11,2,3,5,8,13,21,34,5589,144……

  我們把這一列數(shù)稱為斐波那契數(shù)列。研究一下這一列數(shù)的規(guī)律,從第三項起每一個數(shù)都是排在它前面兩個數(shù)的和。如

  2=11,3=12,5=238=35,13=58,21=813,…

  斐波那契數(shù)列可以無限地寫下去。設表示其中的第n項,那么

  。

  比如,我們上面排出的第11項是89,第12項是144,那么第13項應該是

  

以下各項依序是

  

  

  

  …   …    …

  生物學家研究了花序中小花排列的螺旋數(shù),一般順時針方向為21,逆時針方向為34,恰恰是斐波那契數(shù)列中的。又如向日葵花序中小花或籽粒的排列,順時針螺旋數(shù)與逆時針螺旋數(shù)之比一般是1221(),3455()89144(),在一些大型樣本中,這個比值甚至為144233()。同樣,生物學家研究了各種菠蘿球形花的鱗片順、逆時針的螺旋數(shù),一般總是落在斐波那契數(shù)列3,5813相鄰的兩數(shù)中。

  為什么不同的植物都具有類似的螺旋?為什么這些螺旋圈數(shù)總是相鄰的斐波那契數(shù)?兔子的繁衍與植物的花序之間為什么會有這樣的聯(lián)系,這些問題至今尚未得到令人滿意的解答。目前,科學家們一般認為,對植物來說,斐波那契葉序是最節(jié)約能量的。

查看答案和解析>>

同步練習冊答案