5.已知函數(shù)的值域?yàn)镽,則的取值范圍是 。
4.已知二次函數(shù)滿足,則= 。
3.設(shè)集合,,且,則實(shí)數(shù) 。
2.若集合{且},則 。
抽象函數(shù)的性質(zhì)所對(duì)應(yīng)的一些具體特殊函數(shù)模型:
①正比例函數(shù)
②;指數(shù)函數(shù);
③;對(duì)數(shù)函數(shù);
課本題
1.設(shè)集合,,則集合{且}= 。
定義域: ;值域: ; 奇偶性: ;
單調(diào)性: 是增函數(shù); 是減函數(shù)。
(1)一元一次函數(shù):,當(dāng)時(shí),是增函數(shù);當(dāng)時(shí),是減函數(shù);
(2)一元二次函數(shù):
一般式:;對(duì)稱軸方程是x=-;頂點(diǎn)為(-,);
兩點(diǎn)式:;對(duì)稱軸方程是x=與軸交點(diǎn)(x,0)(x,0);
頂點(diǎn)式:;對(duì)稱軸方程是x=k;頂點(diǎn)為(k,h);
①一元二次函數(shù)的單調(diào)性:
當(dāng)時(shí):(-)為增函數(shù);(-)為減函數(shù);
當(dāng)時(shí):(-)為增函數(shù);(-)為減函數(shù);
②二次函數(shù)求最值問題:首先要采用配方法,化為的形式,
有三個(gè)類型題型:(1)頂點(diǎn)固定,區(qū)間也固定。如:
(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要討論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外。(3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要討論區(qū)間中的參數(shù).③二次方程實(shí)數(shù)根的分布問題: 設(shè)實(shí)系數(shù)一元二次方程的兩根為
(3)反比例函數(shù):
(4)指數(shù)函數(shù):
指數(shù)運(yùn)算法則: , , 。
指數(shù)函數(shù):y= (a>o,a≠1),圖象恒過點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0<a<1兩種情況進(jìn)行討論,要能夠畫出函數(shù)圖象的簡(jiǎn)圖。
(5)對(duì)數(shù)函數(shù):
對(duì)數(shù)運(yùn)算法則: , , .
對(duì)數(shù)函數(shù):y= (a>o,a≠1) 圖象恒過點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0<a<1兩種情況進(jìn)行討論,要能夠畫出函數(shù)圖象的簡(jiǎn)圖。
注意:
(1)與的圖象關(guān)系是關(guān)于y=x對(duì)稱;
(2)比較兩個(gè)指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時(shí)轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較。
(3)已知函數(shù)的定義域?yàn)?sub>,求的取值范圍。
已知函數(shù)的值域?yàn)?sub>,求的取值范圍。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過 平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會(huì)結(jié)合向量的平移,理解按照向量(m,n)平移的意義。
對(duì)稱變換 y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱
y=f(x)→y=-f(x) ,關(guān)于x軸對(duì)稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。
(注意:它是一個(gè)偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù);
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數(shù)。
判別方法:定義法, 圖像法 ,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
相同函數(shù)的判斷方法:① ;②
(1)函數(shù)解析式的求法:
①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①,則g(x); ②則f(x);
③,則f(x); ④如:,則;
⑤含參問題的定義域要分類討論;
⑥對(duì)于實(shí)際問題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來確定。如:已知扇形的周長(zhǎng)為20,半徑為,扇形面積為,則 r;定義域?yàn)?u> 。
(3)函數(shù)值域的求法:
①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;
②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;
④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來求值域;
⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;
⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。
求下列函數(shù)的值域:①(2種方法);
②(2種方法);③(2種方法);
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com