題目列表(包括答案和解析)
..如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過C點(diǎn)。已知AB=3米,AD=2米。
(1)設(shè)(單位:米),要使花壇AMPN的面積大于32平方米,求的取值范圍;
..(本小題滿分12分)
已知:,,
函數(shù).
(1)化簡的解析式,并求函數(shù)的單調(diào)遞減區(qū)間;
(2)在△ABC中,分別是角A,B,C的對邊,已知,△ABC的面積為,求的值.
..在中,分別為內(nèi)角所對的邊,且.
現(xiàn)給出三個條件:①; ②;③.試從中選出兩個可以確定的條件,并以此為依據(jù)求的面積.(只需寫出一個選定方案即可)你選擇的條件是 (用序號填寫);由此得到的的面積為
..(滿分8分)已知數(shù)列,
(1)計算
(2)根據(jù)(1)的計算結(jié)果,猜想的表達(dá)式,并用數(shù)學(xué)歸納法進(jìn)行證明。
..(本小題滿分12分)
數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意,總有成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.
題號
答案
1.解析:命題“”的否命題是:“”,故選C.
2.解析:由已知,得:,故選.
3.解析:若,則,解得.故選.
4.解析:由題意得,又.
故選.
5.解析:設(shè)成績?yōu)?sub>環(huán)的人數(shù)是,由平均數(shù)的概念,得:.
故選.
6.解析:是偶函數(shù);是指數(shù)函數(shù);是對數(shù)函數(shù).故選.
7.解析:①的三視圖均為正方形;②的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為圓;④的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為正方形.故選.
8.解析:程序的運(yùn)行結(jié)果是,選.
9.解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉淼?sub>倍.答案:.
10.解析:特殊值法:令,有.故選.
題號
11
12
13
14
15
答案
11.解析:.
12.解析:令,則,令,則,
同理得即當(dāng)時,的值以為周期,
所以.
13.解析:由圖象知:當(dāng)函數(shù)的圖象過點(diǎn)時,
取得最大值為2.
14. (坐標(biāo)系與參數(shù)方程選做題)解析:將極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程,圓上的動點(diǎn)到直線的距離的最大值就是圓心到直線的距離再加上半徑.故填.
15. (幾何證明選講選做題)解析:連結(jié),
則在和中:,
且,所以,
故.
三.解答題:本大題共6小題,滿分80分.解答須寫出文字說明.證明過程和演算步驟.
16.析:主要考察三角形中的邊角關(guān)系、向量的坐標(biāo)運(yùn)算、二次函數(shù)的最值.
解:(Ⅰ)∵,∴, ………………3分
又∵,∴. ……………………………………………5分
(Ⅱ) ……………………………………………6分
, ………………………8分
∵,∴. ……………10分
∴當(dāng)時,取得最小值為. …………12分
17.析:主要考察立體幾何中的位置關(guān)系、體積.
解:(Ⅰ)證明:連結(jié),則//, …………1分
∵是正方形,∴.∵面,∴.
又,∴面. ………………4分
∵面,∴,
∴. …………………………………………5分
(Ⅱ)證明:作的中點(diǎn)F,連結(jié).
∵是的中點(diǎn),∴,
∴四邊形是平行四邊形,∴ . ………7分
∵是的中點(diǎn),∴,
又,∴.
∴四邊形是平行四邊形,//,
∵,,
∴平面面. …………………………………9分
又平面,∴面. ………………10分
(3). ……………………………11分
. ……………………………14分
18.析:主要考察事件的運(yùn)算、古典概型.
解:設(shè)“朋友乘火車、輪船、汽車、飛機(jī)來”分別為事件,則,,,,且事件之間是互斥的.
(Ⅰ)他乘火車或飛機(jī)來的概率為………4分
(Ⅱ)他乘輪船來的概率是,
所以他不乘輪船來的概率為. ………………8分
(Ⅲ)由于,
所以他可能是乘飛機(jī)來也可能是乘火車或汽車來的. …………………12分
19.析:主要考察函數(shù)的圖象與性質(zhì),導(dǎo)數(shù)的應(yīng)用.
解:(Ⅰ)由函數(shù)的圖象關(guān)于原點(diǎn)對稱,得,………………1分
∴,∴. …………2分
∴,∴. ……………………………4分
∴,即. ……………………6分
∴. ……………………………………………………7分
(Ⅱ)由(Ⅰ)知,∴.
由 ,∴. …………………9分
0
+
0
ㄋ
極小
ㄊ
極大
ㄋ
∴. ………………………14分
20.析:主要考察直線.圓的方程,直線與圓的位置關(guān)系.
解:(Ⅰ)(法一)∵點(diǎn)在圓上, …………………………2分
∴直線的方程為,即. ……………………………5分
(法二)當(dāng)直線垂直軸時,不符合題意. ……………………………2分
當(dāng)直線與軸不垂直時,設(shè)直線的方程為,即.
則圓心到直線的距離,即:,解得,……4分
∴直線的方程為. ……………………………………………5分
(Ⅱ)設(shè)圓:,∵圓過原點(diǎn),∴.
∴圓的方程為.…………………………7分
∵圓被直線截得的弦長為,∴圓心到直線:的距離:
. …………………………………………9分
整理得:,解得或. ……………………………10分
∵,∴. …………………………………………………………13分
∴圓:. ……………………………………14分
21.析:主要考察等差、等比數(shù)列的定義、式,求數(shù)列的和的方法.
解:(Ⅰ)設(shè)的公差為,則:,,
∵,,∴,∴. ………………………2分
∴. …………………………………………4分
(Ⅱ)當(dāng)時,,由,得. …………………5分
當(dāng)時,,,
∴,即. …………………………7分
∴. ……………………………………………………………8分
∴是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分
(Ⅲ)由(2)可知:. ……………………………10分
∴. …………………………………11分
∴.
∴.
∴
. ………………………………………13分
∴. …………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com