(Ⅱ)求出點()的橫坐標關于的表達式, 查看更多

 

題目列表(包括答案和解析)

(本小題12分)
如圖,<…<)是曲線C上的n個點,點在x軸的正半軸上,且⊿是正三角形(是坐標原點)。

(1)寫出
(2)求出點的橫坐標關于n的表達式并用數(shù)學歸納法證明

查看答案和解析>>

(本小題12分)

如圖,<…<)是曲線C: 上的n個點,點在x軸的正半軸上,且⊿是正三角形(是坐標原點)。

(1)寫出

(2)求出點的橫坐標關于n的表達式并用數(shù)學歸納法證明

 

 

查看答案和解析>>

(本小題12分)
如圖,<…<)是曲線C上的n個點,點在x軸的正半軸上,且⊿是正三角形(是坐標原點)。

(1)寫出
(2)求出點的橫坐標關于n的表達式并用數(shù)學歸納法證明

查看答案和解析>>

如圖,、、…、)是曲線)上的個點,點)在軸的正半軸上,且是正三角形(是坐標原點).

(Ⅰ)寫出、、

(Ⅱ)求出點)的橫坐標關于的表達式;

(Ⅲ)設,若對任意的正整數(shù),當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

如圖,建立平面直角坐標系x0y,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.
已知炮彈發(fā)射后的軌跡在方程y=kx-數(shù)學公式(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關.炮彈的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)若規(guī)定炮彈的射程不小于6千米,設在此條件下炮彈射出的最大高度為f(k),求f(k)的最小值.

查看答案和解析>>

一、              選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個備選項中,有且只有一項是符合要求的.

題號

1

2

3

4

5

6

7

8

答案

D

A

A

C

B

B

C

A

二、              填空題:本大題共7小題,每小題5分,共30分.其中13~15小題是選做題,考生只能選做兩題,若三題全答,則只計算前兩題得分.

9.             10.             11.

12.②③                                13.,

14.,                     15.,

三、解答題:本大題共6小題,共80分.解答應寫出文字說明、證明過程或演算步驟.

16.    解:(Ⅰ)因為,,所以

   

因此,當,即)時,取得最大值

(Ⅱ)由,兩邊平方得

,即

因此,

17.    解:(Ⅰ)記“小球落入袋中”為事件,“小球落入袋中”為事件,則事件的對立事件為,而小球落入袋中當且僅當小球一直向左落下或一直向右落下,故

,

從而;

(Ⅱ)顯然,隨機變量,故

18.    解: 建立如圖所示的空間直角坐標系,

并設,則

    (Ⅰ),,

所以,從而得

;

(Ⅱ)設是平面

法向量,則由,

可以取

    顯然,為平面的法向量.

    設二面角的平面角為,則此二面角的余弦值

19.    解:(Ⅰ)依題意,有),化簡得

),

這就是動點的軌跡的方程;

    (Ⅱ)依題意,可設、、,則有

,

兩式相減,得,由此得點的軌跡方程為

).

    設直線(其中),則

,

故由,即,解之得的取值范圍是

20.    解:(Ⅰ)依題意知:直線是函數(shù)在點處的切線,故其斜率

,

所以直線的方程為

    又因為直線的圖像相切,所以由

不合題意,舍去);

    (Ⅱ)因為),所以

時,;當時,

因此,上單調遞增,在上單調遞減.

因此,當時,取得最大值;

(Ⅲ)當時,.由(Ⅱ)知:當時,,即.因此,有

21.    解:(Ⅰ),;

(Ⅱ)依題意,得,,由此及

,

    由(Ⅰ)可猜想:).

    下面用數(shù)學歸納法予以證明:

    (1)當時,命題顯然成立;

    (2)假定當時命題成立,即有,則當時,由歸納假設及

,即

解之得

不合題意,舍去),

即當時,命題成立.

    由(1)、(2)知:命題成立.

(Ⅲ)

       

       

),則,所以上是增函數(shù),故當時,取得最小值,即當時,

    ,即

   

解之得,實數(shù)的取值范圍為


同步練習冊答案