③;④.其中正確命題的個數(shù)有A.1個 B.2個 C.3個 D.4個 查看更多

 

題目列表(包括答案和解析)

命題甲“兩條直線確定一個平面”,命題乙“兩組對邊相等的四邊形是平行四邊形”,命題丙“兩組對邊分別平行的四邊形是平行四邊形”,命題丁“有三個角都是直角的四邊形是矩形”.其中正確命題的個數(shù)是


  1. A.
    0個
  2. B.
    3個
  3. C.
    2個
  4. D.
    1個

查看答案和解析>>

命題“若方程x2+a=0無實(shí)根,則a≥0”其中原命題、逆命題、否命題、逆否命題中,正確的命題個數(shù)有

    A.1個          B.2個           C. 3個            D.4個

查看答案和解析>>

命題甲“兩條直線確定一個平面”,命題乙“兩組對邊相等的四邊形是平行四邊形”,命題丙“兩組對邊分別平行的四邊形是平行四邊形”,命題丁“有三個角都是直角的四邊形是矩形”.其中正確命題的個數(shù)是      

[  ]

A0個   B3個   C2個   D1

查看答案和解析>>

命題:(1)底面是正多邊形的棱錐,一定是正棱錐;(2)所有的側(cè)棱相等的棱錐一定是正棱錐;(3)正棱錐的棱相等;(4)用一個平面截棱錐,夾在底面與截面間的幾何體稱為棱臺,其中正確的個數(shù)為

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

下列命題中
(1)常數(shù)列既是等差數(shù)列又是等比數(shù)列;
(2)a∈(0,
π
2
),則aina+
1
sina
有最小值2
(3)若數(shù)列{an}前n項(xiàng)和Sn=Pn,則無論P(yáng)取何值時{an}一定不是等比數(shù)列.
(4)在△ABC中,B=60°,b=6
3
,a=10,則滿足條件的三角形只有一個.
(5)函數(shù)f(x)=cos2x-sin2x的最小正周期為2π其中正確命題的序號是
(3),(4)
(3),(4)

查看答案和解析>>

一、本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標(biāo)準(zhǔn)制訂相應(yīng)的評分細(xì)則.

二、對計(jì)算題當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后續(xù)部分的解答有較嚴(yán)重的錯誤,就不再給分.

三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分?jǐn)?shù).

一.選擇題:CCDAB   CBDAD

1.選C.

2.將各選項(xiàng)代入檢驗(yàn)易得答案選C.

3.由函數(shù)以為周期,可排除A、B,由函數(shù)在為增函數(shù),可排除C,故選D。

5.正確命題有②、④,故選B.

6.

,故選C。

7.將圓的方程化為標(biāo)準(zhǔn)方程得,由數(shù)形結(jié)合不難得出所求的距離差為已知圓的直徑長.,故選B.

8.該程序的功能是求和,因輸出結(jié)果,故選D.

9.如圖設(shè)點(diǎn)P為AB的三等分點(diǎn),要使△PBC的面積不小于,則點(diǎn)P只能在

AP上選取,由幾何概型的概率

公式得所求概率為.故選A.

10.如圖:易得答案選D.

二.填空題:11.800、20%;12. 3;13. ①③④⑤;14. ; 15.

11.由率分布直方圖知,及格率==80%,

及格人數(shù)=80%×1000=800,優(yōu)秀率=%.

12.由

,得

13.顯然①可能,②不可能,③④⑤如右圖知都有可能。

14.在平面直角坐標(biāo)系中,曲線分別表示圓和直線,易知

15. C為圓周上一點(diǎn),AB是直徑,所以AC⊥BC,而BC=3,AB=6,得∠BAC=30°,進(jìn)而得∠B=60°,所以∠DCA=60°,又∠ADC=90°,得∠DAC=30°,

三.解答題:

16.解:(1)

              ------------------------4分

(2)∵

,

由正弦定理得:

------------6分

如圖過點(diǎn)B作垂直于對岸,垂足為D,則BD的長就是該河段的寬度。

中,∵,------------8分

       (米)

∴該河段的寬度米。---------------------------12分

17.解:(1)設(shè),()由成等比數(shù)列得

,----------------①,   

  ∴---------------②

由①②得,  ∴-----------------------------4分

,顯然數(shù)列是首項(xiàng)公差的等差數(shù)列

------------------------------------6分

[或]

(2)∵

------------8分

2

---10分

。------------------------------------------12分

18.(1)解:∵

,

平面------------ ----------------2分

中, ,

中,

,

.--------------4分

(2)證法1:由(1)知SA=2, 在中,---6分

,∴-------------------8分

〔證法2:由(1)知平面,∵,

,∵,,∴

又∵,∴

(3) ∵

為二面角C-SA-B的平面角---------10分

中,∵

,

∴即所求二面角C-SA-B為-------------------------14分

19.解:(1)依題意知,動點(diǎn)到定點(diǎn)的距離等于到直線的距離,曲線是以原點(diǎn)為頂點(diǎn),為焦點(diǎn)的拋物線………………………………2分

    ∵      ∴ 

∴ 曲線方程是………4分

(2)設(shè)圓的圓心為,∵圓,

∴圓的方程為  ……………………………7分

得:  

設(shè)圓與軸的兩交點(diǎn)分別為

方法1:不妨設(shè),由求根公式得

,…………………………10分

又∵點(diǎn)在拋物線上,∴,

∴ ,即=4--------------------------------------------------------13分

∴當(dāng)運(yùn)動時,弦長為定值4…………………………………………………14分

 〔方法2:∵ 

 又∵點(diǎn)在拋物線上,∴, ∴  

∴當(dāng)運(yùn)動時,弦長為定值4〕

20. 解:設(shè)AN的長為x米(x >2)

       ∵,∴|AM|=

∴SAMPN=|AN|•|AM|= ------------------------------------- 4分

(1)由SAMPN > 32 得  > 32 ,

       ∵x >2,∴,即(3x-8)(x-8)> 0

       ∴       即AN長的取值范圍是----------- 8分

(2)令y=,則y′=  -------------- 10分

∵當(dāng),y′< 0,∴函數(shù)y=上為單調(diào)遞減函數(shù),

∴當(dāng)x=3時y=取得最大值,即(平方米)

此時|AN|=3米,|AM|=米      ---------------------- 12分

21.解:

(1) 

---------------2分

當(dāng),函數(shù)有一個零點(diǎn);--------------3分

當(dāng)時,,函數(shù)有兩個零點(diǎn)。------------4分

(2)令,則

 ,

內(nèi)必有一個實(shí)根。

即方程必有一個實(shí)數(shù)根屬于。------------8分

(3)假設(shè)存在,由①得

   

由②知對,都有

,

當(dāng)時,,其頂點(diǎn)為(-1,0)滿足條件①,又,都有,滿足條件②。

∴存在,使同時滿足條件①、②。------------------------------14分

 


同步練習(xí)冊答案