∴.得解.故的取值范圍是. 查看更多

 

題目列表(包括答案和解析)

,,為常數(shù),離心率為的雙曲線(xiàn)上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線(xiàn)的焦點(diǎn)與雙曲線(xiàn)的一頂點(diǎn)重合。(Ⅰ)求拋物線(xiàn)的方程;(Ⅱ)過(guò)直線(xiàn)為負(fù)常數(shù))上任意一點(diǎn)向拋物線(xiàn)引兩條切線(xiàn),切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

【解析】第一問(wèn)中利用由已知易得雙曲線(xiàn)焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為,所以?huà)佄锞(xiàn)的方程

第二問(wèn)中,,,

故直線(xiàn)的方程為,即,

所以,同理可得:

借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線(xiàn)焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為,所以?huà)佄锞(xiàn)的方程

(Ⅱ)設(shè),,,

故直線(xiàn)的方程為,即,

所以,同理可得:,

是方程的兩個(gè)不同的根,所以

由已知易得,即

 

查看答案和解析>>

中,已知 ,面積

(1)求的三邊的長(zhǎng);

(2)設(shè)(含邊界)內(nèi)的一點(diǎn),到三邊的距離分別是

①寫(xiě)出所滿(mǎn)足的等量關(guān)系;

②利用線(xiàn)性規(guī)劃相關(guān)知識(shí)求出的取值范圍.

【解析】第一問(wèn)中利用設(shè)中角所對(duì)邊分別為

    

又由 

又由 

       又

的三邊長(zhǎng)

第二問(wèn)中,①

依題意有

作圖,然后結(jié)合區(qū)域得到最值。

 

查看答案和解析>>

已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為,

(1)若方程有兩個(gè)相等的根,求的解析式;

(2)若的最大值為正數(shù),求的取值范圍.

【解析】第一問(wèn)中利用∵f(x)+2x>0的解集為(1,3),

設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

第二問(wèn)中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個(gè)相等的根,

,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是

 

查看答案和解析>>

已知函數(shù),

(1)設(shè)常數(shù),若在區(qū)間上是增函數(shù),求的取值范圍;

(2)設(shè)集合,,若,求的取值范圍.

【解析】本試題主要考查了三角函數(shù)的性質(zhì)的運(yùn)用以及集合關(guān)系的運(yùn)用。

第一問(wèn)中利用

利用函數(shù)的單調(diào)性得到,參數(shù)的取值范圍。

第二問(wèn)中,由于解得參數(shù)m的取值范圍。

(1)由已知

又因?yàn)槌?shù),若在區(qū)間上是增函數(shù)故參數(shù) 

 (2)因?yàn)榧?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911521242131321/SYS201207091152574838608756_ST.files/image006.png">,,若

 

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線(xiàn)下方,求的取值范圍.

【解析】第一問(wèn)中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問(wèn)中,在區(qū)間上,函數(shù)的圖象恒在曲線(xiàn)下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時(shí),,故. …………5分

所以.                 …………6分

(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

在區(qū)間上,函數(shù)的圖象恒在曲線(xiàn)下方等價(jià)于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點(diǎn),,

當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿(mǎn)足,

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線(xiàn)下方.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案