(3)經技術革新后.仍有四個等級的產品.但次品率降為.一等品率提高為.如果此時要求1件產品的平均利潤不小于4.73萬元.則三等品率最多是多少? 查看更多

 

題目列表(包括答案和解析)

(16分) 隨機抽取某廠的某種產品400件,經質檢,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生產1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設1件產品的利潤(單位:萬元)為

(1)求的分布列和數(shù)學期望;

(2)經技術革新后,仍有四個等級的產品,但次品率降為,一等品率提高為.如果此時要求1件產品的平均利潤不小于4.73萬元,則三等品率最多是多少?

查看答案和解析>>

(16分) 隨機抽取某廠的某種產品400件,經質檢,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生產1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設1件產品的利潤(單位:萬元)為

(1)求的分布列和數(shù)學期望;

(2)經技術革新后,仍有四個等級的產品,但次品率降為,一等品率提高為.如果此時要求1件產品的平均利潤不小于4.73萬元,則三等品率最多是多少?

查看答案和解析>>

(本小題滿分16分)

隨機抽取某廠的某種產品400件,經質檢,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生產1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設1件產品的利潤(單位:萬元)為

(1)求的分布列和數(shù)學期望

(2)經技術革新后,仍有四個等級的產品,但次品率降為,一等品率提高為.如果此時要求1件產品的平均利潤不小于4.73萬元,則三等品率最多是多少?

 

 

查看答案和解析>>

(本小題滿分16分)
隨機抽取某廠的某種產品400件,經質檢,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生產1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設1件產品的利潤(單位:萬元)為
(1)求的分布列和數(shù)學期望
(2)經技術革新后,仍有四個等級的產品,但次品率降為,一等品率提高為.如果此時要求1件產品的平均利潤不小于4.73萬元,則三等品率最多是多少?

查看答案和解析>>

隨機抽取某廠的某種產品200件,經質檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設1件產品的利潤(單位:萬元)為

(1)求的分布列;(2)求1件產品的平均利潤(即的數(shù)學期望);

(3)經技術革新后,仍有四個等級的產品,但次品率降為1%,一等品率提高為70%.如果此時要求1件產品的平均利潤不小于4.73萬元,則三等品率最多是多少?

查看答案和解析>>

 

一、選擇題:C D C C     A D B B

1.C【解析】,而,即,

2.D【解析】,,故

3.C【解析】依題意我們知道二年級的女生有380人,那么三年級的學生的人數(shù)應該是,即總體中各個年級的人數(shù)比例為,故在分層抽樣中應在三年級抽取的學生人數(shù)為

4.C  5.A

6.D【解析】不難判斷命題為真命題,命題為假命題,從而上述敘述中只有 為真命題

7.B【解析】,若函數(shù)在上有大于零的極值點,即有正根。當有成立時,顯然有,此時,由我們馬上就能得到參數(shù)的范圍為。

8.B      

 

二、填空題:

9.【解析】要結束程序的運算,就必須通過整除的條件運算,而同時也整除,那么的最小值應為的最小公倍數(shù)12,即此時有

10.【解析】按二項式定理展開的通項為,我們知道的系數(shù)為,即,也即,而是正整數(shù),故只能取1。

11.【解析】易知點C為,而直線與垂直,我們設待求的直線的方程為,將點C的坐標代入馬上就能求出參數(shù)的值為,故待求的直線的方程為

12.【解析】,故函數(shù)的最小正周期。

 

二、選做題(13―15題,考生只能從中選做兩題)

13.【解析】解得,即兩曲線的交點為。

14.

15.【解析】依題意,我們知道,由相似三角形的性質我們有,即。

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明,證明過程或演算步驟.

16.解:(1)依題意有,則,將點代入得,而,,,故;

(2)依題意有,而,

。

 

17.解:(1)的所有可能取值有6,2,1,-2;

,

的分布列為:

6

2

1

-2

0.63

0.25

0.1

0.02

(2)

(3)設技術革新后的三等品率為,則此時1件產品的平均利潤為

依題意,,即,解得

所以三等品率最多為

 

18.解:(1)由,

,G點的坐標為,

, ,

過點G的切線方程為

,點的坐標為,

由橢圓方程得點的坐標為,,

即橢圓和拋物線的方程分別為

(2)軸的垂線與拋物線只有一個交點,

為直角的只有一個,同理為直角的只有一個。

若以為直角,設點坐標為、兩點的坐標分別為,

關于的二次方程有一大于零的解,有兩解,即以為直角的有兩個,

因此拋物線上存在四個點使得為直角三角形。

 

19.解: ,

對于,

時,函數(shù)上是增函數(shù);

時,函數(shù)上是減函數(shù),在上是增函數(shù);

對于

時,函數(shù)上是減函數(shù);

時,函數(shù)上是減函數(shù),在上是增函數(shù)。

 

20.解:(1)在中,

而PD垂直底面ABCD,

,

中,,即為以為直角的直角三角形。

設點到面的距離為,

,

,

;

(2),而,

,,是直角三角形;

(3),,

,

的面積

21.解:(1)由求根公式,不妨設,得

,

(2)設,則,由

得,,消去,得,是方程的根,

由題意可知,

①當時,此時方程組的解記為

、分別是公比為的等比數(shù)列,

由等比數(shù)列性質可得,,

兩式相減,得

,

,即,

②當時,即方程有重根,,

,得,不妨設,由①可知

,

,等式兩邊同時除以,得,即

數(shù)列是以1為公差的等差數(shù)列,

綜上所述,

(3)把,代入,得,解得


同步練習冊答案