題目列表(包括答案和解析)
小華將一張矩形紙片(如圖1)沿對(duì)角線CA剪開,得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.
(1)若ED與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你觀察、測(cè)量MB、MD的長(zhǎng)度,猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
(2)在(1)的條件下,求出∠BMD的大小(用含α的式子表示),并說(shuō)明當(dāng)α=45°時(shí),△BMD是什么三角形?
(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連接MB、MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不需要證明,并說(shuō)明α為何值時(shí),△BMD為等邊三角形.
小華將一張矩形紙片(如圖1)沿對(duì)角線CA剪開,得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.
(1)若ED與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你觀察、測(cè)量MB、MD的長(zhǎng)度,猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
(2)在(1)的條件下,求出∠BMD的大小(用含α的式子表示),并說(shuō)明當(dāng)α=45
°時(shí),△BMD是什么三角形?(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90
°),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連接MB、MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不需要證明,并說(shuō)明α為何值時(shí),△BMD為等邊三角形.小華將一張矩形紙片(如圖1)沿對(duì)角線AC剪開,得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上。
1.(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)
2.(2)在(1)的條件下,求出∠BMD的大。ㄓ煤碌氖阶颖硎荆,并說(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)
3.(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)
小華將一張矩形紙片(如圖1)沿對(duì)角線AC剪開,得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上。
1.(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)
2.(2)在(1)的條件下,求出∠BMD的大。ㄓ煤碌氖阶颖硎荆⒄f(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)
3.(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com