如圖(1),將Rt△AOB放置在平面直角坐標(biāo)系xOy中,∠A=90°,∠AOB=60°,OB=
2,斜邊OB在x軸的正半軸上,點(diǎn)A在第一象限,∠AOB的平分線OC交AB于C.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線BC-CO以每秒1個(gè)單位長度的速度向終點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿折線CO-Oy以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí)P、Q同時(shí)停止運(yùn)動(dòng).
(1)OC、BC的長;
(2)設(shè)△CPQ的面積為S,求S與t的函數(shù)關(guān)系式;
(3)當(dāng)P在OC上、Q在y軸上運(yùn)動(dòng)時(shí),如圖(2),設(shè)PQ與OA交于點(diǎn)M,當(dāng)t為何值時(shí),△OPM為等腰三角形?求出所有滿足條件的t值.