(2)設(shè)有直線與拋物線交于點(diǎn)E.F.與軸交于點(diǎn)M.拋物線與軸交于點(diǎn)N.若拋物線的對稱軸為.△MNE與△MNF的面積之比為5:1.求證:△ABC是等邊三角形, 查看更多

 

題目列表(包括答案和解析)

拋物線y=
1
2
x2+(k+
1
2
)x+(k+1)(k為常數(shù))與x軸交于A(x1,0)、B(x2,0)(x1<0<x2)兩點(diǎn),與y軸交于C點(diǎn),且滿足(OA+OB)2=OC2+16.
(1)求此拋物線的解析式;
(2)設(shè)M、N是拋物線在x軸上方的兩點(diǎn),且到x軸的距離均為1,點(diǎn)P是拋物線的頂點(diǎn),問:過M、N、C三點(diǎn)的圓與直線CP是否只有一個(gè)公共點(diǎn)C?試證明你的結(jié)論.

查看答案和解析>>

拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,設(shè)拋物線y=ax2+bx+3的頂點(diǎn)為M,直線y=-2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移后拋物線與射線CD(含端點(diǎn)C)只有一個(gè)公共點(diǎn),求它的頂點(diǎn)橫坐標(biāo)的取值范圍;
(3)如圖2,將拋物線y=ax2+bx+3平移,平移后拋物線與x軸交于點(diǎn)E、F,與y軸交于點(diǎn)N,當(dāng)E(-1,0)、F(5,0)時(shí),在拋物線上是否存在點(diǎn)G,使△GFN中FN邊上的高為7
2
?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,設(shè)拋物線y=ax2+bx+3的頂點(diǎn)為M,直線y=-2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移后拋物線與射線CD(含端點(diǎn)C)只有一個(gè)公共點(diǎn),求它的頂點(diǎn)橫坐標(biāo)的取值范圍;
(3)如圖2,將拋物線y=ax2+bx+3平移,平移后拋物線與x軸交于點(diǎn)E、F,與y軸交于點(diǎn)N,當(dāng)E(-1,0)、F(5,0)時(shí),在拋物線上是否存在點(diǎn)G,使△GFN中FN邊上的高為數(shù)學(xué)公式?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

拋物線y=數(shù)學(xué)公式x2+(k+數(shù)學(xué)公式)x+(k+1)(k為常數(shù))與x軸交于A(x1,0)、B(x2,0)(x1<0<x2)兩點(diǎn),與y軸交于C點(diǎn),且滿足(OA+OB)2=OC2+16.
(1)求此拋物線的解析式;
(2)設(shè)M、N是拋物線在x軸上方的兩點(diǎn),且到x軸的距離均為1,點(diǎn)P是拋物線的頂點(diǎn),問:過M、N、C三點(diǎn)的圓與直線CP是否只有一個(gè)公共點(diǎn)C?試證明你的結(jié)論.

查看答案和解析>>

拋物線y=ax2+bx+3經(jīng)過A(﹣3,0),B(﹣1,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,設(shè)拋物線y=ax2+bx+3的頂點(diǎn)為M,直線y=﹣2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移后拋物線與射線CD(含端點(diǎn)C)只有一個(gè)公共點(diǎn),求它的頂點(diǎn)橫坐標(biāo)的取值范圍;
(3)如圖2,將拋物線y=ax2+bx+3平移,平移后拋物線與x軸交于點(diǎn)E、F,與y軸交于點(diǎn)N,當(dāng)E(﹣1,0)、F(5,0)時(shí),在拋物線上是否存在點(diǎn)G,使△GFN中FN邊上的高為?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案