所以數(shù)列{an}的前n項(xiàng)和 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=a(a≠3),,設(shè),n∈N*
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)若an+1≥an,n∈N*,求實(shí)數(shù)a的最小值;
(3)當(dāng)a=4時(shí),給出一個(gè)新數(shù)列{en},其中,設(shè)這個(gè)新數(shù)列的前n項(xiàng)和為Cn,若Cn可以寫(xiě)成tp(t,p∈N*且t>1,p>1)的形式,則稱Cn為“指數(shù)型和”.問(wèn){Cn}中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3+3S2=0,則公比q=_______

【解析】顯然公比,設(shè)首項(xiàng)為,則由,得,即,即,即,所以,解得.

 

查看答案和解析>>

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=5,S5=15,則數(shù)列的前100項(xiàng)和為

(A)   (B)    (C)   (D)

【解析】由,得,所以,所以,又,選A.

 

查看答案和解析>>

已知Sn是正數(shù)數(shù)列{an}的前n項(xiàng)和,S12、S22、…、Sn2、…是以3為首項(xiàng),以1為公差的等差數(shù)列;數(shù)列{bn}為無(wú)窮等比數(shù)列,其前四項(xiàng)之和為120,第二項(xiàng)與第四項(xiàng)之和為90.

(Ⅰ)求an和bn

(Ⅱ)試從數(shù)列{}中挑出一些項(xiàng)構(gòu)成一個(gè)無(wú)窮等比數(shù)列,使它的各項(xiàng)和等于,并指出所挑數(shù)列的首項(xiàng)和公比.

查看答案和解析>>

已知Sn是正整數(shù)列{an}的前n項(xiàng)和,、、…、、…是以3為首項(xiàng),以1為公差的等差數(shù)列,數(shù)列{bn}為無(wú)窮等比數(shù)列,其前四項(xiàng)之和為120,第二項(xiàng)與第四項(xiàng)之和為90.

(Ⅰ)求an,bn;

(Ⅱ)試從數(shù)列中挑出一些項(xiàng)構(gòu)成一個(gè)無(wú)窮等比數(shù)列,使它的各項(xiàng)和等于,并指出所挑出數(shù)列的首項(xiàng)和公比.

查看答案和解析>>


同步練習(xí)冊(cè)答案