已知:如圖.∠ADC=∠ABC.BE.DF分別平分∠ABC.∠ADC.且∠1=∠2.求證:∠A=∠C. 查看更多

 

題目列表(包括答案和解析)

已知:如圖,∠ADC=∠ABC,BE、DF分別平分∠ABC、∠ADC,且∠1=∠2.

求證:∠A=∠C.

查看答案和解析>>

13、(Ⅰ)已知:如圖,平行四邊形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,EF過(guò)點(diǎn)O與AB、CD分別相交于點(diǎn)E、F.
求證:BE=DF.
(Ⅱ)請(qǐng)寫(xiě)出使如圖所示的四邊形ABCD為平行四邊形的條件(例如,填:AB∥CD且AD∥BC.在不添加輔助線(xiàn)的情況下,寫(xiě)出除上述條件外的另外四組條件,將答案直接寫(xiě)在下面的橫線(xiàn)上.)
(1):
∠DAB=∠DCB且∠ADC=∠ABC

(2):
AB=CD且AD=BC
;
(3):
OA=OC且OD=OB

(4):
AB∥CD且∠DAB=∠DCB

查看答案和解析>>

如圖,已知,∠ADC=∠ABC,BE、DF分別平分∠ABC、∠ADC,且∠1=∠2.求證:∠A=∠精英家教網(wǎng)C.
證明:∵BE、DF分別平分∠ABC、∠ADC(已知)
∴∠1=
1
2
∠ABC,∠3=
1
2
∠ADC(
 

∵∠ABC=∠ADC(已知)
1
2
∠ABC=
1
2
∠ADC(
 

∴∠1=∠3(
 

∵∠1=∠2(已知)
∴∠2=∠3(等量代換)
∴(
 
)∥(
 
)(
 

∴∠A+∠
 
=180°,∠C+∠
 
=180°(
 

∴∠A=∠C(等量代換).

查看答案和解析>>

如圖,已知,∠ADC=∠ABC,BE、DF分別平分∠ABC、∠ADC,且∠1=∠2.求證:∠A=∠C.
證明:∵BE、DF分別平分∠ABC、∠ADC(已知)
∴∠1=數(shù)學(xué)公式∠ABC,∠3=數(shù)學(xué)公式∠ADC(________)
∵∠ABC=∠ADC(已知)
數(shù)學(xué)公式∠ABC=數(shù)學(xué)公式∠ADC(________)
∴∠1=∠3(________)
∵∠1=∠2(已知)
∴∠2=∠3(等量代換)
∴(________)∥(________)(________)
∴∠A+∠________=180°,∠C+∠________=180°(________)
∴∠A=∠C(等量代換).

查看答案和解析>>

填寫(xiě)推理的依據(jù).
(1)已知:如圖1,AB∥CD,AD∥BC.求證:∠B=∠D.
證明:∵AB∥CD,AD∥BC(已知)
∴∠A+∠B=180°,∠A+∠D=180°
 

∴∠B=∠D
 


(2)已知:如圖2,DF∥AC,∠A=∠F.求證:AE∥BF.
證明:∵DF∥AC (已知)
∴∠FBC=∠
 

∵∠A=∠F(已知)
∴∠A=∠FBC
 

∴AE∥FB
 


(3)已知:如圖3,∠ADC=∠ABC,BE、DF分別平分∠ABC、∠ADC,且∠1=∠2
求證:∠A=∠C.
證明:∵BE、DF分別平分∠ABC、∠ADC(已知)
∴∠1=
1
2
∠ABC,∠3=
1
2
∠ADC
 

∵∠ABC=∠ADC(已知)
1
2
∠ABC=
1
2
∠ADC
 

∴∠1=∠3
 

∵∠1=∠2(已知)
∴∠2=∠3
 

 
 

∴∠A+∠
 
=180°,∠C+∠
 
=180°
 

∴∠A=∠C(等量代換)
精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊(cè)答案