(2012•河南)類(lèi)比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整.
原題:如圖1,在平行四邊形ABCD中,點(diǎn)E是BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交射線CD于點(diǎn)G.若
=3,求
的值.
(1)嘗試探究
在圖1中,過(guò)點(diǎn)E作EH∥AB交BG于點(diǎn)H,則AB和EH的數(shù)量關(guān)系是
AB=3EH
AB=3EH
,CG和EH的數(shù)量關(guān)系是
CG=2EH
CG=2EH
,
的值是
.
(2)類(lèi)比延伸
如圖2,在原題的條件下,若
=m(m>0),則
的值是
(用含有m的代數(shù)式表示),試寫(xiě)出解答過(guò)程.
(3)拓展遷移
如圖3,梯形ABCD中,DC∥AB,點(diǎn)E是BC的延長(zhǎng)線上的一點(diǎn),AE和BD相交于點(diǎn)F.若
=a,
=b,(a>0,b>0)
,則
的值是
ab
ab
(用含a、b的代數(shù)式表示).