22.如圖14.在平行四邊形ABCD中.AB=2BC.點E在DA的延長線上.AE=AD.點F在AD的延長線上.DF=AD.CE交AB于點G.BF交CD于點M.CE與BF交于點H.求證:四邊形GBCM是菱形. 查看更多

 

題目列表(包括答案和解析)

.(本題滿分12分) 如圖,在平面直角坐標(biāo)系中,四邊形OABC為直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).

1.(1)如圖①,若點P、Q分別從點C、A同時出發(fā),點P以每秒2個單位的速度由C向B運動,點Q以每秒4個單位的速度由A向O運動,當(dāng)點Q停止運動時,點P也停止運動.設(shè)運動時間為t秒(0≤t≤4).

①求當(dāng)t為多少時,四邊形PQAB為平行四邊形?(4分)

②求當(dāng)t為多少時,直線PQ將梯形OABC分成左右兩部分的比為1:2,并求出此時直線PQ的解析式. (4分)

2.(2)如圖②,若點P、Q分別是線段BC、AO上的任意兩點(不與線段BC、AO的端點重合),且四邊形OQPC面積為10,試說明直線PQ一定經(jīng)過一定點,并求出該定點的坐標(biāo). (4分)

查看答案和解析>>

.(本題滿分12分) 如圖,在平面直角坐標(biāo)系中,四邊形OABC為直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
【小題1】(1)如圖①,若點P、Q分別從點C、A同時出發(fā),點P以每秒2個單位的速度由C向B運動,點Q以每秒4個單位的速度由A向O運動,當(dāng)點Q停止運動時,點P也停止運動.設(shè)運動時間為t秒(0≤t≤4).
①求當(dāng)t為多少時,四邊形PQAB為平行四邊形?(4分)
②求當(dāng)t為多少時,直線PQ將梯形OABC分成左右兩部分的比為1:2,并求出此時直線PQ的解析式. (4分)
【小題2】(2)如圖②,若點P、Q分別是線段BC、AO上的任意兩點(不與線段BC、AO的端點重合),且四邊形OQPC面積為10,試說明直線PQ一定經(jīng)過一定點,并求出該定點的坐標(biāo). (4分)

查看答案和解析>>

.(本題滿分12分) 如圖,在平面直角坐標(biāo)系中,四邊形OABC為直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).

1.(1)如圖①,若點P、Q分別從點C、A同時出發(fā),點P以每秒2個單位的速度由C向B運動,點Q以每秒4個單位的速度由A向O運動,當(dāng)點Q停止運動時,點P也停止運動.設(shè)運動時間為t秒(0≤t≤4).

①求當(dāng)t為多少時,四邊形PQAB為平行四邊形?(4分)

②求當(dāng)t為多少時,直線PQ將梯形OABC分成左右兩部分的比為1:2,并求出此時直線PQ的解析式. (4分)

2.(2)如圖②,若點P、Q分別是線段BC、AO上的任意兩點(不與線段BC、AO的端點重合),且四邊形OQPC面積為10,試說明直線PQ一定經(jīng)過一定點,并求出該定點的坐標(biāo). (4分)

查看答案和解析>>

.(本題滿分12分) 如圖,在平面直角坐標(biāo)系中,四邊形OABC為直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
小題1:(1)如圖①,若點P、Q分別從點C、A同時出發(fā),點P以每秒2個單位的速度由C向B運動,點Q以每秒4個單位的速度由A向O運動,當(dāng)點Q停止運動時,點P也停止運動.設(shè)運動時間為t秒(0≤t≤4).
①求當(dāng)t為多少時,四邊形PQAB為平行四邊形?(4分)
②求當(dāng)t為多少時,直線PQ將梯形OABC分成左右兩部分的比為1:2,并求出此時直線PQ的解析式. (4分)
小題2:(2)如圖②,若點P、Q分別是線段BC、AO上的任意兩點(不與線段BC、AO的端點重合),且四邊形OQPC面積為10,試說明直線PQ一定經(jīng)過一定點,并求出該定點的坐標(biāo). (4分)

查看答案和解析>>

(本小題滿分14分)平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點A、C的坐標(biāo)分別為(0,3)、(,0),將此平行四邊形繞點0順時針旋轉(zhuǎn)90°,得到平行四邊形。

(1)若拋物線過點C,A,,求此拋物線的解析式;

(2)求平行四邊形ABOC和平行四邊形重疊部分△的周長;

(3)點M是第一象限內(nèi)拋物線上的一動點,間:點M在何處時△的面積最大?最大面積是多少?并求出此時點M的坐標(biāo)。

 

查看答案和解析>>


同步練習(xí)冊答案