已知:如圖.D是△ABC的BC邊上的中點.DE⊥AC.DF⊥AB.垂足分別是E.F.且BF=CE.求證:(1)△ABC是等腰三角形, (2)當(dāng)∠A=90°時.試判斷四邊形AFDE是怎樣的四邊形.證明你的結(jié)論. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知:如圖,拋物線與y軸交于點C(0,),  與x軸交于點A、 B,點A的坐標為(2,0).

(1)求該拋物線的解析式;

(2)點P是線段AB上的動點,過點P作PD∥BC,交AC于點D,連接CP.當(dāng)△CPD的面積最大時,求點P的坐標;

(3)若平行于x軸的動直線與該拋物線交于點Q,與直線BC交于點F,點M 的坐標為(,0).問:是否存在這樣的直線,使得△OMF是等腰三角形?若存   在,請求出點Q的坐標;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分10分)

    學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

根據(jù)上述對角的正對定義,解下列問題:

(1)sad 的值為(   )A.       B.1  C.      D.2

 

(2)對于,∠A的正對值sad A的取值范圍是        .

(3)已知,其中為銳角,試求sad的值.

 

 

查看答案和解析>>

(本小題滿分12分)

如圖,在平面直角坐標系中,頂點為(,)的拋物線交軸于點,交軸于兩點(點在點的左側(cè)), 已知點坐標為(,)。

(1)求此拋物線的解析式;

(2)過點作線段的垂線交拋物線于點, 如果以點為圓心的圓與直線相切,請判斷拋物線的對稱軸與⊙有怎樣的位置關(guān)系,并給出證明;

(3)已知點是拋物線上的一個動點,且位于,兩點之間,問:當(dāng)點運動到什么位置時,的面積最大?并求出此時點的坐標和的最大面積.

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小題滿分14分)

已知:如圖,拋物線與y軸交于點C(0,),  與x軸交于點A、 B,點A的坐標為(2,0).

(1)求該拋物線的解析式;

(2)點P是線段AB上的動點,過點P作PD∥BC,交AC于點D,連接CP.當(dāng)△CPD的面積最大時,求點P的坐標;

(3)若平行于x軸的動直線與該拋物線交于點Q,與直線BC交于點F,點M 的坐標為(,0).問:是否存在這樣的直線,使得△OMF是等腰三角形?若存   在,請求出點Q的坐標;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分12分)已知直角坐標系中菱形ABCD的位置如圖,C,D兩點的坐標分別為(4,0),(0,3).現(xiàn)有兩動點P,Q分別從A,C同時出發(fā),點P沿線段AD向終點D運動,點Q沿折線CBA向終點A運動,設(shè)運動時間為t秒.

1.(1)填空:菱形ABCD的邊長是  ▲  、面積是

  ▲  、 高BE的長是  ▲  ;

2.(2)探究下列問題:

①若點P的速度為每秒1個單位,點Q的速度為每秒2個單位.當(dāng)點Q在線段BA上時,求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;

②若點P的速度為每秒1個單位,點Q的速度變?yōu)槊棵?i>k個單位,在運動過程中,任何時刻都有相應(yīng)的k值,使得△APQ沿它的一邊翻折,翻折前后兩個三角形組成的四邊形為菱形.請?zhí)骄慨?dāng)t = 4 秒時的情形,并求出k的值.

 

查看答案和解析>>


同步練習(xí)冊答案