題目列表(包括答案和解析)
(本小題共15分)已知函數(shù)。
(1)若為方程的兩個實根,并且A,B為銳角,求m的取值范圍;
(2)對任意實數(shù),恒有,證明:.
(本小題共15分)如圖直角中,,,,點在邊上,橢圓以為焦點且經(jīng)過.現(xiàn)以線段所在直線為軸,其中中點為坐標(biāo)原點建立直角坐標(biāo)系.
(1)求橢圓的方程;
(2)為橢圓內(nèi)的一定點,點是橢圓上的一動點.求的最值.
(3)設(shè)橢圓分別與正半軸交于兩點,且與橢圓相交于兩點,求四邊形面積的最大值.
(本小題共15分)如圖直角中,,,,點在邊上,橢圓以為焦點且經(jīng)過.現(xiàn)以線段所在直線為軸,其中中點為坐標(biāo)原點建立直角坐標(biāo)系.
(1)求橢圓的方程;
(2)為橢圓內(nèi)的一定點,點是橢圓上的一動點.求的最值.
(3)設(shè)橢圓分別與正半軸交于兩點,且與橢圓相交于兩點,求四邊形面積的最大值.
(本小題共15分)如圖直角中,,,,點在邊上,橢圓以為焦點且經(jīng)過.現(xiàn)以線段所在直線為軸,其中中點為坐標(biāo)原點建立直角坐標(biāo)系.
(1)求橢圓的方程;
(2)為橢圓內(nèi)的一定點,點是橢圓上的一動點.求的最值.
(3)設(shè)橢圓分別與正半軸交于兩點,且與橢圓相交于兩點,求四邊形面積的最大值.
(本小題共12分)
現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進行調(diào)查,隨機抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) |
[15,25 |
[25,35 |
[35,45 |
[45,55 |
[55,65 |
[65,75 |
頻數(shù) |
5 |
10 |
15 |
10 |
5 |
5 |
贊成人數(shù) |
4 |
8 |
12 |
5 |
2 |
1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表并問是否有99%的把握認為“月收入以5500為分界點對“樓市限購令” 的態(tài)度有差異;
|
月收入不低于55百元的人數(shù) |
月收入低于55百元的人數(shù) |
合計 |
贊成 |
|
||
不贊成 |
|
||
合計 |
|
|
|
(2)若對在[15,25) ,[25,35)的被調(diào)查中各隨機選取兩人進行追蹤調(diào)查,記選中的4人中不贊成“樓市限購令”人數(shù)為 ,求隨機變量的分布列。
附:
1. {2,8} 2. 3. 4.
5. 6. 1 7.20
8. 9. 10.2
11. 12. 13. [2,3] 14.
15.證明:(Ⅰ)在中,
∵,,,∴.
∴.????????????????? 2分
又 ∵平面平面,
平面平面,平面,
∴平面.
又平面,
∴平面平面.………………………………………………………………4分
(Ⅱ)當(dāng)點位于線段PC靠近C點的三等分點處時,平面.………5分
證明如下:連接AC,交于點N,連接MN.
∵,所以四邊形是梯形.
∵,∴.
又 ∵,
∴,∴MN.…………………………………………………7分
∵平面,∴平面.………………………………………9分
(Ⅲ)過作交于,
∵平面平面,
∴平面.
即為四棱錐的高.……………………………………………………11分
又 ∵是邊長為4的等邊三角形,∴.……………12分
在中,斜邊邊上的高為,此即為梯形的高.
∴梯形的面積.
故.……………………………………………14分
16.設(shè)的二次項系數(shù)為,其圖象上兩點為(,)、B(,)因為,,所以,由x的任意性得f(x)的圖象關(guān)于直線x=1對稱, ………………………………………………………………(2分)
∵ ,,,
,,,………………………………(4分)
∴ 當(dāng)時,∵f(x)在x≥1內(nèi)是增函數(shù),
,.
∵ , ∴ .………………………………………………(8分)
當(dāng)時,∵f(x)在x≥1內(nèi)是減函數(shù).
同理可得或,.………………………………………(11分)
綜上:的解集是當(dāng)時,為
當(dāng)時,為,或.
17.解:(1)若千米/小時,每小時耗油量為升/小時. 共耗油升.
所以,從甲地到乙地要耗油
(2)設(shè)當(dāng)汽車以千米/小時的速度勻速行駛時耗油量最少,,耗油量為S升.
則, ,
令,解得,.
列表:
單調(diào)減
極小值11.25
單調(diào)增
所以,當(dāng)汽車以
18.解:(Ⅰ)設(shè)
對稱軸方程,由題意或或
∴或或∴
(Ⅱ)由已知與(Ⅰ)得:,, ,,.
橢圓的標(biāo)準(zhǔn)方程為.
設(shè),,聯(lián)立
得,
又,
因為橢圓的右頂點為,,即,
,
,.
解得:,,且均滿足,
當(dāng)時,的方程為,直線過定點,與已知矛盾;
當(dāng)時,的方程為,直線過定點.
所以,直線過定點,定點坐標(biāo)為.
19. 解: (1) 由題知: , 解得 , 故.
(2) ,
,
,
又滿足上式. 所以.
(3) 若是與的等差中項, 則,
從而, 得.
因為是的減函數(shù), 所以
當(dāng), 即時, 隨的增大而減小, 此時最小值為;
當(dāng), 即時, 隨的增大而增大, 此時最小值為.
又, 所以,
即數(shù)列中最小, 且.
20. 解:(1)由題意得
而,所以、的關(guān)系為
(2)由(1)知,
令,要使在其定義域內(nèi)是單調(diào)函數(shù),只需在內(nèi)滿足:恒成立.
①當(dāng)時,,因為>,所以<0,<0,
∴在內(nèi)是單調(diào)遞減函數(shù),即適合題意;
②當(dāng)>0時,,其圖像為開口向上的拋物線,對稱軸為,∴,
只需,即,
∴在內(nèi)為單調(diào)遞增函數(shù),故適合題意.
③當(dāng)<0時,,其圖像為開口向下的拋物線,對稱軸為,只要,即時,在恒成立,故<0適合題意.
綜上所述,的取值范圍為.
(3)∵在上是減函數(shù),
∴時,;時,,即,
①當(dāng)時,由(2)知在上遞減<2,不合題意;
②當(dāng)0<<1時,由,
又由(2)知當(dāng)時,在上是增函數(shù),
∴<,不合題意;
③當(dāng)時,由(2)知在上是增函數(shù),<2,又在上是減函數(shù),
故只需>, ,而,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com