題目列表(包括答案和解析)
(1)利用油膜法估測油酸分子的大小,實(shí)驗(yàn)器材有:濃度為0.05%(體積分?jǐn)?shù))的油酸酒精溶液、最小刻度為0.1ml的量筒、盛有適量清水的45×50cm2淺盤、痱子粉、橡皮頭滴管、玻璃板、彩筆、坐標(biāo)紙。則:
①下面給出的實(shí)驗(yàn)步驟中,正確順序?yàn)椋?u> 。
A.將玻璃板放在淺盤上,用彩筆將油酸薄膜的形狀畫在玻璃板上。
B.用滴管將濃度為0.05%油酸酒精溶液一滴一滴地滴入量筒中,記下滴入1ml油酸酒精溶液時(shí)的滴數(shù)N
C.將畫有油酸薄膜輪廓的玻璃板放在坐標(biāo)紙上,以坐標(biāo)紙上邊長為1cm的正方形為單位,計(jì)算輪廓內(nèi)正方形的個(gè)數(shù),算出油酸薄膜的面積S
D.將痱子粉均勻地撒在淺盤內(nèi)水面上,用滴管吸取濃度為0.05%的油酸酒精溶液,從低處向水面中央一滴一滴地滴入,直到油酸薄膜有足夠大的面積又不與器壁接觸為止,記下滴入的滴數(shù)n
②該實(shí)驗(yàn)測得的單個(gè)油酸分子的直徑約為 (單位:cm)。
A、 B、 C、 D、
(2)如圖所示,科學(xué)家操控智能機(jī)器人在某星球上進(jìn)行了一項(xiàng)科學(xué)實(shí)驗(yàn),采用雙線擺和光電計(jì)數(shù)器測定當(dāng)?shù)氐闹亓铀俣龋阎扛鶓揖長為,兩懸點(diǎn)間相距,金屬小球半徑為,為光電計(jì)數(shù)器,現(xiàn)在將小球垂直于紙面向外拉動(dòng),使懸線偏離豎直方向一個(gè)較小的角度并由靜止釋放,同時(shí)啟動(dòng)光電計(jì)數(shù)器,當(dāng)小球第一次經(jīng)過圖中虛線(光束)位置時(shí),由射向的光束被擋住,計(jì)數(shù)器計(jì)數(shù)一次,顯示為,同時(shí)計(jì)數(shù)器開始計(jì)時(shí),然后每當(dāng)小球經(jīng)過點(diǎn)時(shí),計(jì)數(shù)器都計(jì)數(shù)一次,當(dāng)計(jì)數(shù)器上顯示的計(jì)數(shù)次數(shù)剛好為時(shí),所用的時(shí)間為,由此可知:
①雙線擺的振動(dòng)周期___________,雙線擺的擺長為_______________.
②計(jì)算重力加速度時(shí),依據(jù)公式___________代入周期和等效擺長的值即可求出重力加速度.
③科學(xué)家在實(shí)驗(yàn)中,測量5種不同擺長情況下單擺的振動(dòng)周期,記錄表格如下:
0.5 | 0.8 | 0.9 | 1.0 | 1.2 | |
3.46 | 4.38 | 4.65 | 4.90 | 5.37 | |
11.94 | 19.20 | 21.66 | 24.00 | 28.80 |
以為橫坐標(biāo),為縱坐標(biāo),在圖上作出-圖像,并利用此圖象求得重力加速度_________(保留兩位有效數(shù)字)
(1)利用油膜法估測油酸分子的大小,實(shí)驗(yàn)器材有:濃度為0.05%(體積分?jǐn)?shù))的油酸酒精溶液、最小刻度為0.1ml的量筒、盛有適量清水的45×50cm2淺盤、痱子粉、橡皮頭滴管、玻璃板、彩筆、坐標(biāo)紙。則:
①下面給出的實(shí)驗(yàn)步驟中,正確順序?yàn)椋?u> 。
A.將玻璃板放在淺盤上,用彩筆將油酸薄膜的形狀畫在玻璃板上??????????????????????。
B.用滴管將濃度為0.05%油酸酒精溶液一滴一滴地滴入量筒中,記下滴入1ml油酸酒精溶液時(shí)的滴數(shù)N
C.將畫有油酸薄膜輪廓的玻璃板放在坐標(biāo)紙上,以坐標(biāo)紙上邊長為1cm的正方形為單位,計(jì)算輪廓內(nèi)正方形的個(gè)數(shù),算出油酸薄膜的面積S
D.將痱子粉均勻地撒在淺盤內(nèi)水面上,用滴管吸取濃度為0.05%的油酸酒精溶液,從低處向水面中央一滴一滴地滴入,直到油酸薄膜有足夠大的面積又不與器壁接觸為止,記下滴入的滴數(shù)n
②該實(shí)驗(yàn)測得的單個(gè)油酸分子的直徑約為 (單位:cm)。
A、 B、 C、 D、
(2)如圖所示,科學(xué)家操控智能機(jī)器人在某星球上進(jìn)行了一項(xiàng)科學(xué)實(shí)驗(yàn),采用雙線擺和光電計(jì)數(shù)器測定當(dāng)?shù)氐闹亓铀俣龋阎扛鶓揖長為,兩懸點(diǎn)間相距,金屬小球半徑為,為光電計(jì)數(shù)器,現(xiàn)在將小球垂直于紙面向外拉動(dòng),使懸線偏離豎直方向一個(gè)較小的角度并由靜止釋放,同時(shí)啟動(dòng)光電計(jì)數(shù)器,當(dāng)小球第一次經(jīng)過圖中虛線(光束)位置時(shí),由射向的光束被擋住,計(jì)數(shù)器計(jì)數(shù)一次,顯示為,同時(shí)計(jì)數(shù)器開始計(jì)時(shí),然后每當(dāng)小球經(jīng)過點(diǎn)時(shí),計(jì)數(shù)器都計(jì)數(shù)一次,當(dāng)計(jì)數(shù)器上顯示的計(jì)數(shù)次數(shù)剛好為時(shí),所用的時(shí)間為,由此可知:
①雙線擺的振動(dòng)周期___________,雙線擺的擺長為_______________.
②計(jì)算重力加速度時(shí),依據(jù)公式___________代入周期和等效擺長的值即可求出重力加速度.
③科學(xué)家在實(shí)驗(yàn)中,測量5種不同擺長情況下單擺的振動(dòng)周期,記錄表格如下:
0.5 | 0.8 | 0.9 | 1.0 | 1.2 | |
3.46 | 4.38 | 4.65 | 4.90 | 5.37 | |
11.94 | 19.20 | 21.66 | 24.00 | 28.80 |
以為橫坐標(biāo),為縱坐標(biāo),在圖上作出-圖像,并利用此圖象求得重力加速度_________(保留兩位有效數(shù)字)
(1)利用油膜法估測油酸分子的大小,實(shí)驗(yàn)器材有:濃度為0.05%(體積分?jǐn)?shù))的油酸酒精溶液、最小刻度為0.1ml的量筒、盛有適量清水的45×50cm2淺盤、痱子粉、橡皮頭滴管、玻璃板、彩筆、坐標(biāo)紙。則:
①下面給出的實(shí)驗(yàn)步驟中,正確順序?yàn)椋?u> 。
A.將玻璃板放在淺盤上,用彩筆將油酸薄膜的形狀畫在玻璃板上。
B.用滴管將濃度為0.05%油酸酒精溶液一滴一滴地滴入量筒中,記下滴入1ml油酸酒精溶液時(shí)的滴數(shù)N
C.將畫有油酸薄膜輪廓的玻璃板放在坐標(biāo)紙上,以坐標(biāo)紙上邊長為1cm的正方形為單位,計(jì)算輪廓內(nèi)正方形的個(gè)數(shù),算出油酸薄膜的面積S
D.將痱子粉均勻地撒在淺盤內(nèi)水面上,用滴管吸取濃度為0.05%的油酸酒精溶液,從低處向水面中央一滴一滴地滴入,直到油酸薄膜有足夠大的面積又不與器壁接觸為止,記下滴入的滴數(shù)n
②該實(shí)驗(yàn)測得的單個(gè)油酸分子的直徑約為 (單位:cm)。
A、 B、 C、 D、
(2)如圖所示,科學(xué)家操控智能機(jī)器人在某星球上進(jìn)行了一項(xiàng)科學(xué)實(shí)驗(yàn),采用雙線擺和光電計(jì)數(shù)器測定當(dāng)?shù)氐闹亓铀俣,已知每根懸線長為,兩懸點(diǎn)間相距,金屬小球半徑為,為光電計(jì)數(shù)器,現(xiàn)在將小球垂直于紙面向外拉動(dòng),使懸線偏離豎直方向一個(gè)較小的角度并由靜止釋放,同時(shí)啟動(dòng)光電計(jì)數(shù)器,當(dāng)小球第一次經(jīng)過圖中虛線(光束)位置時(shí),由射向的光束被擋住,計(jì)數(shù)器計(jì)數(shù)一次,顯示為,同時(shí)計(jì)數(shù)器開始計(jì)時(shí),然后每當(dāng)小球經(jīng)過點(diǎn)時(shí),計(jì)數(shù)器都計(jì)數(shù)一次,當(dāng)計(jì)數(shù)器上顯示的計(jì)數(shù)次數(shù)剛好為時(shí),所用的時(shí)間為,由此可知:
①雙線擺的振動(dòng)周期___________,雙線擺的擺長為_______________.
②計(jì)算重力加速度時(shí),依據(jù)公式___________代入周期和等效擺長的值即可求出重力加速度.
③科學(xué)家在實(shí)驗(yàn)中,測量5種不同擺長情況下單擺的振動(dòng)周期,記錄表格如下:
0.5 |
0.8 |
0.9 |
1.0 |
1.2 |
|
3.46 |
4.38 |
4.65 |
4.90 |
5.37 |
|
11.94 |
19.20 |
21.66 |
24.00 |
28.80 |
以為橫坐標(biāo),為縱坐標(biāo),在圖上作出-圖像,并利用此圖象求得重力加速度_________(保留兩位有效數(shù)字)
第二部分 牛頓運(yùn)動(dòng)定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點(diǎn)
a、矢量性
b、獨(dú)立作用性:ΣF → a ,ΣFx → ax …
c、瞬時(shí)性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點(diǎn)
a、同性質(zhì)(但不同物體)
b、等時(shí)效(同增同減)
c、無條件(與運(yùn)動(dòng)狀態(tài)、空間選擇無關(guān))
第二講 牛頓定律的應(yīng)用
一、牛頓第一、第二定律的應(yīng)用
單獨(dú)應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個(gè)環(huán)節(jié)。
應(yīng)用要點(diǎn):合力為零時(shí),物體靠慣性維持原有運(yùn)動(dòng)狀態(tài);只有物體有加速度時(shí)才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達(dá)的驅(qū)動(dòng)下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動(dòng)。現(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過程中( )
A、一段時(shí)間內(nèi),工件將在滑動(dòng)摩擦力作用下,對地做加速運(yùn)動(dòng)
B、當(dāng)工件的速度等于v時(shí),它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當(dāng)工件相對皮帶靜止時(shí),它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)
D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)
解說:B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。
較難突破的是A選項(xiàng),在為什么不會(huì)“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會(huì)出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動(dòng)?因?yàn)槿耸强梢孕巫儭⒅匦目梢哉{(diào)節(jié)的特殊“物體”)
此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動(dòng)規(guī)律。用勻變速運(yùn)動(dòng)規(guī)律和牛頓第二定律不難得出
只有當(dāng)L > 時(shí)(其中μ為工件與皮帶之間的動(dòng)摩擦因素),才有相對靜止的過程,否則沒有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時(shí)間t(過程略,答案為5.5s)
進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:
① 如果在P處剪斷細(xì)繩,在剪斷瞬時(shí),B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時(shí),B的加速度又是多少?
解說:第①問是常規(guī)處理。由于“彈簧不會(huì)立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時(shí)B鉤碼的加速度為零(A的加速度則為2g)。
第②問需要我們反省這樣一個(gè)問題:“彈簧不會(huì)立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時(shí),彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應(yīng)用
應(yīng)用要點(diǎn):受力較少時(shí),直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時(shí),結(jié)合正交分解與“獨(dú)立作用性”解題。
在難度方面,“瞬時(shí)性”問題相對較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說:受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應(yīng)用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應(yīng)具備一個(gè)多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)
進(jìn)階練習(xí)1:在一向右運(yùn)動(dòng)的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動(dòng),車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個(gè)穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動(dòng)。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(shí)(a<ctgθ),小球能夠保持相對斜面靜止。試求此時(shí)繩子的張力T 。
解說:當(dāng)力的個(gè)數(shù)較多,不能直接用平行四邊形尋求合力時(shí),宜用正交分解處理受力,在對應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。
正交坐標(biāo)的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個(gè)關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時(shí),在分解受力時(shí),只分解重力G就行了,但值得注意,加速度a不在任何一個(gè)坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨(dú)立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當(dāng)a>ctgθ時(shí),張力T的結(jié)果會(huì)變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)
學(xué)生活動(dòng):用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”
進(jìn)階練習(xí):如圖9所示,自動(dòng)扶梯與地面的夾角為30°,但扶梯的臺(tái)階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動(dòng)時(shí),站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。
解:這是一個(gè)展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進(jìn)而充分領(lǐng)會(huì)用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時(shí)加速度。
解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學(xué)生活動(dòng))思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時(shí)釋放,會(huì)有什么現(xiàn)象?原因是什么?
結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時(shí)調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動(dòng)來反推)。
知識點(diǎn),牛頓第二定律的瞬時(shí)性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應(yīng)用
要點(diǎn):在動(dòng)力學(xué)問題中,如果遇到幾個(gè)研究對象時(shí),就會(huì)面臨如何處理對象之間的力和對象與外界之間的力問題,這時(shí)有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時(shí)地運(yùn)用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。
對N個(gè)對象,有N個(gè)隔離方程和一個(gè)(可能的)整體方程,這(N + 1)個(gè)方程中必有一個(gè)是通解方程,如何取舍,視解題方便程度而定。
補(bǔ)充:當(dāng)多個(gè)對象不具有共同的加速度時(shí),一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個(gè)局限(可以介紹推導(dǎo)過程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個(gè)長為L的均質(zhì)直棒,現(xiàn)給棒一個(gè)沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?
解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結(jié)論又如何?
解:分兩種情況,(1)能拉動(dòng);(2)不能拉動(dòng)。
第(1)情況的計(jì)算和原題基本相同,只是多了一個(gè)摩擦力的處理,結(jié)論的化簡也麻煩一些。
第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動(dòng),結(jié)論不變。
若棒不能被拉動(dòng),且F = μMg時(shí)(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。
應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個(gè)長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會(huì)變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對盒子的哪一側(cè)內(nèi)壁有壓力?
解:略。
答:(1)不會(huì);(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。
2、如圖15所示,三個(gè)物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個(gè)物體無相對滑動(dòng),水平推力F應(yīng)為多少?
解說:
此題對象雖然有三個(gè),但難度不大。隔離m2 ,豎直方向有一個(gè)平衡方程;隔離m1 ,水平方向有一個(gè)動(dòng)力學(xué)方程;整體有一個(gè)動(dòng)力學(xué)方程。就足以解題了。
答案:F = 。
思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(dòng)(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個(gè)恰當(dāng)?shù)腇′,使三者無相對運(yùn)動(dòng)?如果沒有,說明理由;如果有,求出這個(gè)F′的值。
解:此時(shí),m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當(dāng)m1 ≤ m2時(shí),沒有適應(yīng)題意的F′;當(dāng)m1 > m2時(shí),適應(yīng)題意的F′= 。
3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時(shí)貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?
解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動(dòng)力學(xué)方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當(dāng)系統(tǒng)中各個(gè)體的加速度不相等時(shí),經(jīng)典的整體法不可用。如果各個(gè)體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時(shí),我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個(gè)方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、
1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個(gè)質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說:本題涉及兩個(gè)物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時(shí),務(wù)必在這個(gè)方向上進(jìn)行突破。
(學(xué)生活動(dòng))定型判斷斜面的運(yùn)動(dòng)情況、滑塊的運(yùn)動(dòng)情況。
位移矢量示意圖如圖19所示。根據(jù)運(yùn)動(dòng)學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。
(學(xué)生活動(dòng))這兩個(gè)加速度矢量有什么關(guān)系?
沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學(xué)生活動(dòng))思考:如何求a1的值?
解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動(dòng),開始時(shí)與棒的A端相距b ,相對棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動(dòng),加速度為a(且a>gtgθ)時(shí),求滑套C從棒的A端滑出所經(jīng)歷的時(shí)間。
解說:這是一個(gè)比較特殊的“連接體問題”,尋求運(yùn)動(dòng)學(xué)參量的關(guān)系似乎比動(dòng)力學(xué)分析更加重要。動(dòng)力學(xué)方面,只需要隔離滑套C就行了。
(學(xué)生活動(dòng))思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運(yùn)動(dòng)過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設(shè)全程時(shí)間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進(jìn)動(dòng)力學(xué)在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡單。過程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對棒的加速度a相是沿棒向上的,故動(dòng)力學(xué)方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識出版社,2002年8月第一版。
例題選講針對“教材”第三章的部分例題和習(xí)題。
百度分享
一個(gè)有一定厚度的圓盤,可以繞通過中心垂直于盤面的水平軸轉(zhuǎn)動(dòng),用下面的方法測量它勻速轉(zhuǎn)動(dòng)時(shí)的角速度。
實(shí)驗(yàn)器材:電磁打點(diǎn)計(jì)時(shí)器、米尺、紙帶、復(fù)寫紙片。
實(shí)驗(yàn)步驟:
(1)如圖1所示,將電磁打點(diǎn)計(jì)時(shí)器固定在桌面上,將紙帶的一端穿過打點(diǎn)計(jì)時(shí)器的限位孔后,固定在待測圓盤的側(cè)面上,使得圓盤轉(zhuǎn)動(dòng)時(shí),紙帶可以卷在圓盤側(cè)面上。
(2)啟動(dòng)控制裝置使圓盤轉(zhuǎn)動(dòng),同時(shí)接通電源,打點(diǎn)計(jì)時(shí)器開始打點(diǎn)。
(3)經(jīng)過一段時(shí)間,停止轉(zhuǎn)動(dòng)和打點(diǎn),取下紙帶,進(jìn)行測量。
① 由已知量和測得量表示的角速度的表達(dá)式為ω= 。式中各量的意義是:
.
② 某次實(shí)驗(yàn)測得圓盤半徑r=5.50×10-2m,得到紙帶的一段如圖2所示,求得角速度為 。
(1),T為電磁打點(diǎn)計(jì)時(shí)器打點(diǎn)的時(shí)間間隔,r為圓盤的半徑,x2、x1是紙帶上選定的兩點(diǎn)分別對應(yīng)的米尺的刻度值,n為選定的兩點(diǎn)間的打點(diǎn)數(shù)(含兩點(diǎn))。 (2)6.8/s。 |
一、單選題(本大題共10小題,每小題3分,共30分。在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)正確。請選擇后填入下表對應(yīng)題號選項(xiàng)中)
題號
1
2
3
4
5
6
7
8
9
10
得分
選項(xiàng)
C
C
D
D
A
B
C
B
A
B
二、多選題(本大題共5小題,每小題4分,共20分。在每小題給出的四個(gè)選項(xiàng)中,至少有一個(gè)選項(xiàng)正確,選全的得4分,漏選得2分,多選或錯(cuò)選不得分)
題號
11
12
13
14
15
得分
選項(xiàng)
BC
D
AC
AD
AD
三、填空題
16答案:1.2 Ω 0.3 Ω 1.2 W 80%
17。向下 b
18、 左 、 左
19.(1)應(yīng)該選用的電流表是_A1_;
應(yīng)該選用的滑動(dòng)變阻器是__R1__;
(2)根據(jù)所選的器材,在方框中畫出實(shí)驗(yàn)電路圖。電路圖為分壓電路
(3)則這種金屬材料的電阻率為_8.8×10-7_Ω?m。
(保留二位有效數(shù)字)。
四、計(jì)算題
20.(6分)
(1)P1V1= P2V2, P2= 2P1 2分
V2/ T2= V3/
T3, V3=400 V1/2*273=1.47×10
(2)作圖 2分
21.(6分)
由幾何關(guān)系:R=
sinθ= θ= ∵T= ∴t= 3分
22.(6分)
(1)Em=NBSω=40V 2分
(2)q=N=4×10
(3)P=I2R=()2R=R=79.2W 2分
23、(8分)解析:
(1)將R1視為電源的內(nèi)電阻處理,則根據(jù)電源的輸出功率隨外電阻變化的特點(diǎn),知道當(dāng)R2=R1+r時(shí)電源的輸出功率最大(即外電阻R2消耗的電功率最大):R2=R1+r=(4+2) Ω=6 Ω; 2分
(2)由η==≤20%和I=得:R2≥4 Ω; 2分
(3)P=I2R=()2?(R1+R2)=()2?(4+R2)=600 W 2分
R2=2 Ω;I= A=10 Aη=×100%=×100%=75%. 2分
(4)0Ω 2分
答案:(1)6 Ω (2)R2≥4 Ω (3)2 Ω 75% (4)0Ω
24、(9分)(1)F為安培力,N為支持力,mg為重力 3分
(2)當(dāng)速度為v回路的電流大小
I=
是桿受到的安培力 F=
加速度a== 3分
(3)最大速度時(shí)加速度為零
vm= 3分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com