(2)若 的單調(diào)增區(qū)間. 查看更多

 

題目列表(包括答案和解析)

,則f(x)的單調(diào)增區(qū)間是(    ),單調(diào)減區(qū)間是(    )。

查看答案和解析>>

已知函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是[-2,2]。

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)若的圖象與直線恰有三個公共點,求m的取值范圍。

查看答案和解析>>

已知函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是[-2,2]。

(I)求函數(shù)的解析式;

(II)若的圖象與直線有三個公共點,求m的取值范圍。

查看答案和解析>>

設(shè)函數(shù)

   (1)求的單調(diào)增區(qū)間和單調(diào)減區(qū)間;

   (2)若當(dāng)時(其中e=2.71828…),不等式恒成立,求實數(shù)m的取值范圍;

   (3)若關(guān)于x的方程上恰有兩個相異的實根,求實數(shù)a的取值范圍。

查看答案和解析>>

已知

(1)若的單調(diào)遞增區(qū)間;

(2)若的最大值為4,求a的值;

(3)在(2)的條件下,求滿足集合。

 

查看答案和解析>>

 

第Ⅰ卷(選擇題  共60分)

一、選擇題

<label id="cb4wb"><samp id="cb4wb"></samp></label>
    <sub id="cb4wb"><b id="cb4wb"></b></sub>

    20080422

    第Ⅱ卷(非選擇題  共90分)

    二、填空題

    13.2    14.3   15.   16.①③④

    三、解答題

    17.解:(1)由正弦定理得,…………………………………….….3分

       ,,因此!.6分

    (2)的面積,,………..8分

    ,所以由余弦定理得….10分

    !.12分

    文本框:  18.方法一:                

    (1)證明:連結(jié)BD,

    ∵D分別是AC的中點,PA=PC=

    ∴PD⊥AC,

    ∵AC=2,AB=,BC=

    ∴AB2+BC2=AC2,

    ∴∠ABC=90°,即AB⊥BC.…………2分

    ∴BD=,

    ∵PD2=PA2―AD2=3,PB

    ∴PD2+BD2=PB2

    ∴PD⊥BD,

    ∵ACBD=D

    ∴PD⊥平面ABC.…………………………4分

    (2)解:取AB的中點E,連結(jié)DE、PE,由E為AB的中點知DE//BC,

    ∵AB⊥BC,

    ∴AB⊥DE,

    ∵DE是直線PE的底面ABC上的射景

    ∴PE⊥AB

    ∴∠PED是二面角P―AB―C的平面角,……………………6分

    在△PED中,DE=∠=90°,

    ∴tan∠PDE=

    ∴二面角P―AB―C的大小是

    (3)解:設(shè)點E到平面PBC的距離為h.

    ∵VP―EBC=VE―PBC,

    ……………………10分

    在△PBC中,PB=PC=,BC=

    而PD=

    ∴點E到平面PBC的距離為……………………12分

    方法二:

    (1)同方法一:

    (2)解:解:取AB的中點E,連結(jié)DE、PE,

    過點D作AB的平行線交BC于點F,以D為

      <ins id="cb4wb"><pre id="cb4wb"></pre></ins>

        DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

        則D(0,0,0),P(0,0,),

        E(),B=(

        設(shè)上平面PAB的一個法向量,

        則由

        這時,……………………6分

        顯然,是平面ABC的一個法向量.

        ∴二面角P―AB―C的大小是……………………8分

        (3)解:

        設(shè)平面PBC的一個法向量,

        是平面PBC的一個法向量……………………10分

        ∴點E到平面PBC的距離為………………12分

        19.解:

        20.解(1)由已知,拋物線,焦點F的坐標(biāo)為F(0,1)………………1分

        當(dāng)l與y軸重合時,顯然符合條件,此時……………………3分

        當(dāng)l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點()設(shè)l的斜率為k,則直線l的方程為

        由已知可得………5分

        解得無意義.

        因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

        (2)由已知可設(shè)直線l的方程為……………………8分

        則AB所在直線為……………………9分

        代入拋物線方程………………①

        的中點為

        代入直線l的方程得:………………10分

        又∵對于①式有:

        解得m>-1,

        l在y軸上截距的取值范圍為(3,+)……………………12分

        21.解:(1)在………………1分

        當(dāng)兩式相減得:

        整理得:……………………3分

        當(dāng)時,,滿足上式,

        (2)由(1)知

        ………………8分

        ……………………………………………12分

        22.解:(1)…………………………1分

        是R上的增函數(shù),故在R上恒成立,

        在R上恒成立,……………………2分

        …………3分

        故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

        ∴當(dāng)

        的最小值………………6分

        亦是R上的增函數(shù)。

        故知a的取值范圍是……………………7分

        (2)……………………8分

        ①當(dāng)a=0時,上單調(diào)遞增;…………10分

        可知

        ②當(dāng)

        即函數(shù)上單調(diào)遞增;………………12分

        ③當(dāng)時,有,

        即函數(shù)上單調(diào)遞增!14分

         


        同步練習(xí)冊答案
        <dfn id="cb4wb"><source id="cb4wb"><acronym id="cb4wb"></acronym></source></dfn>