題目列表(包括答案和解析)
ξ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
P1 | 0 | 0 | 0 | 0 | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 |
P2 | 0 | 0 | 0 | 0 | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
(12分)在奧運(yùn)會射箭決賽中,參賽號碼為1~4號的四名射箭運(yùn)動(dòng)員參加射箭比賽。
(Ⅰ)通過抽簽將他們安排到1~4號靶位,試求恰有兩名運(yùn)動(dòng)員所抽靶位號與其參賽號碼相同的概率;
(Ⅱ)記1號、2號射箭運(yùn)動(dòng)員射箭的環(huán)數(shù)為(所有取值為0,1,2,3...,10)分別為、.根據(jù)教練員提供的資料,其概率分布如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 0 | 0 | 0 | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 | |
0 | 0 | 0 | 0 | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
①若1,2號運(yùn)動(dòng)員各射箭一次,求兩人中至少有一人命中9環(huán)的概率;
②判斷1號,2號射箭運(yùn)動(dòng)員誰射箭的水平高?并說明理由.在奧運(yùn)會射箭決賽中,參賽號碼為1~4號的四名射箭運(yùn)動(dòng)員參加射箭比賽.
(Ⅰ)通過抽簽將他們安排到1~4號靶位,試求恰有兩名運(yùn)動(dòng)員所抽靶位號與其參賽號碼相同的概率;
(Ⅱ)記1號、2號射箭運(yùn)動(dòng)員射箭的環(huán)數(shù)為(所有取值為0,1,2,3...,10)的概率分別為、.根據(jù)教練員提供的資料,其概率分布如下表:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
0 |
0 |
0 |
0 |
0.06 |
0.04 |
0.06 |
0.3 |
0.2 |
0.3 |
0.04 |
|
0 |
0 |
0 |
0 |
0.04 |
0.05 |
0.05 |
0.2 |
0.32 |
0.32 |
0.02 |
①1,2號運(yùn)動(dòng)員各射箭一次,求兩人中至少有一人命中9環(huán)的概率;
②判斷1號,2號射箭運(yùn)動(dòng)員誰射箭的水平高?并說明理由.
在奧運(yùn)會射箭決賽中,參賽號碼為1~4號的四名射箭運(yùn)動(dòng)員參加射箭比賽.
(Ⅰ)通過抽簽將他們安排到1~4號靶位,試求恰有兩名運(yùn)動(dòng)員所抽靶位號與其參賽號碼相同的概率;
(Ⅱ)記1號、2號射箭運(yùn)動(dòng)員射箭的環(huán)數(shù)為(所有取值為0,1,2,3...,10)的概率分別為、.根據(jù)教練員提供的資料,其概率分布如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 0 | 0 | 0 | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 | |
0 | 0 | 0 | 0 | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 0 | 0 | 0 | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 | |
0 | 0 | 0 | 0 | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
1-15CBDAC CDB 0 5 100 [3.9] 垂直 2或8
16.⑴ ∵ ,……………………………… 2分
又∵ ,∴ 而為斜三角形,
∵,∴. ……………………………………………………………… 4分
∵,∴ . …………………………………………………… 6分
⑵∵,∴ …10分
即,∵,∴.…………………………………12分
17.(Ⅰ)從4名運(yùn)動(dòng)員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運(yùn)動(dòng)員靶位號與參賽號均不相同的方法有1種,所以恰有一名運(yùn)動(dòng)員所抽靶位號與參賽號相同的概率為 ……………………………4分
(Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524………………………8分
②
所以2號射箭運(yùn)動(dòng)員的射箭水平高…………………………………12分
18.證明:(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴平面ACFE…………………6分
(Ⅱ)取EF中點(diǎn)G,EB中點(diǎn)H,連結(jié)DG、GH、DH,∵DE=DF,∴ ∵平面ACFE,∴ 又∵,∴又∵,∴
∴是二面角B―EF―D的平面角.
在△BDE中∴
∴,∴又∴在△DGH中,
由余弦定理得即二面角B―EF―D的大小余弦值...14分
19.解:(1)由橢圓定義可得,可得
而,,解得 (4分)
(或解:以為直徑的圓必與橢圓有交點(diǎn),即
(2)由,得
解得
此時(shí)
當(dāng)且僅當(dāng)m=2時(shí), (9分)
(3)由
設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,中點(diǎn)Q的坐標(biāo)為
則,兩式相減得
①
且在橢圓內(nèi)的部分
又由可知
②
①②兩式聯(lián)立可求得點(diǎn)Q的坐標(biāo)為
點(diǎn)Q必在橢圓內(nèi)
又 (14分)
20.解:(1)
故……………………………4分
(2)
故
由此猜測
下面證明:當(dāng)時(shí),由
得
若
當(dāng)
當(dāng)時(shí),
當(dāng)時(shí),
總之故在(- (10分)
又
所以當(dāng)時(shí),在(-1,0)上有唯一實(shí)數(shù)解,從而在
上有唯一實(shí)數(shù)解。
綜上可知,. (14分)
21.解:(1)令
令
由①②得 (6分)
(2)由(1)可得
則
又
n
又
………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com