(1)試根據(jù)已知信息.確定一個符合條件的的表達(dá)式, (2) 一般地.當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時.該地區(qū)也進(jìn)入了一年中的旅游“旺季 .那么.一年中的哪幾個月是該地區(qū)的旅游“旺季 ?請說明理由. 查看更多

 

題目列表(包括答案和解析)

(2013•懷化三模)若某地區(qū)每年各個月份降水量發(fā)生周期變化.現(xiàn)用函數(shù)f(n)=100[Acos(ωn+
23
π)+m]近似地刻畫.其中:正整數(shù)n表示月份且n∈[1,12],例如n=1時表示1月份,A和m是正整數(shù),ω>0.統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份降水量有以下規(guī)律:
①各年相同的月份,該地區(qū)降水量基本相同;
②該地區(qū)降水量最大的8月份和最小的12月份相差約400ml;
③2月份該地區(qū)降水量約為100ml,隨后逐月遞增直到8月份達(dá)到最大.
(1)試根據(jù)已知信息,確定一個符合條件的f(n)的表達(dá)式;
(2)一般地,當(dāng)該地區(qū)降水量超過400 ml時,該地區(qū)進(jìn)入了一年中的“汛季”,那么一年中的哪幾個月是該地區(qū)的“汛季”?請說明理由.

查看答案和解析>>

在某個旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性的變化.現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來刻畫. 其中:正整數(shù)表示月份且,例如時表示1月份;是正整數(shù);

統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:

① 各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;

② 該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;

③ 2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.

(1)試根據(jù)已知信息,確定一個符合條件的的表達(dá)式;

(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)達(dá)到或超過400時,該地區(qū)也進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.

查看答案和解析>>

(本小題12分)

在某個以旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性變化.現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來刻畫.其中:正整數(shù)表示月份且,例如時表示1月份;是正整數(shù);

統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:

①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;

②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;

③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.

(I)試根據(jù)已知信息,確定一個符合條件的的表達(dá)式;

(II)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時,該地區(qū)進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.

查看答案和解析>>

(本小題12分)
在某個以旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性變化.現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來刻畫.其中:正整數(shù)表示月份且,例如時表示1月份;是正整數(shù);
統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(I)試根據(jù)已知信息,確定一個符合條件的的表達(dá)式;
(II)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時,該地區(qū)進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.

查看答案和解析>>

(本小題12分)
在某個以旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性變化.現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來刻畫.其中:正整數(shù)表示月份且,例如時表示1月份;是正整數(shù);
統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(I)試根據(jù)已知信息,確定一個符合條件的的表達(dá)式;
(II)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時,該地區(qū)進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

15

答案

A

C

B

20090116

三、解答題:(12’+14’+15’+16’+22’=79’)

16.解:由條件,可得,故左焦點的坐標(biāo)為

設(shè)為橢圓上的動點,由于橢圓方程為,故

因為,所以

,

由二次函數(shù)性質(zhì)可知,當(dāng)時,取得最小值4.

所以,的模的最小值為2,此時點坐標(biāo)為

17.解:(1)當(dāng)時,

當(dāng)時,

當(dāng)時,;(不單獨分析時的情況不扣分)

當(dāng)時,

(2)由(1)知:當(dāng)時,集合中的元素的個數(shù)無限;

當(dāng)時,集合中的元素的個數(shù)有限,此時集合為有限集.

因為,當(dāng)且僅當(dāng)時取等號,

所以當(dāng)時,集合的元素個數(shù)最少.

此時,故集合

18.(本題滿分15分,1小題6分,第2小題9

解:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (2)解:如圖所示.由,則

所以,四棱錐的體積為

19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

由此可得,;

由規(guī)律②可知,,

;

又當(dāng)時,

所以,,由條件是正整數(shù),故取

    綜上可得,符合條件.

(2) 解法一:由條件,,可得

,

,

因為,,所以當(dāng)時,,

,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

解法二:列表,用計算器可算得

月份

6

7

8

9

10

11

人數(shù)

383

463

499

482

416

319

故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

     ;

  (2)解法一:設(shè)此子數(shù)列的首項為,公比為,由條件得:,

,即    

 則 .

所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為,

其通項公式為.

解法二:由條件,可設(shè)此子數(shù)列的首項為,公比為

………… ①

又若,則對每一

都有………… ②

從①、②得;

;

因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

數(shù)列,通項公式為,

(3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

因為等式左邊或為偶數(shù),或為一個分?jǐn)?shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

【以上解答屬于層級3,可得設(shè)計分4分,解答分6分】

問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

………… ①

,則①,矛盾;若,則①

,矛盾;故必有,不妨設(shè),則

………… ②

1當(dāng)時,②,等式左邊是偶數(shù),

右邊是奇數(shù),矛盾;

2當(dāng)時,②

,

兩個等式的左、右端的奇偶性均矛盾;

綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

【以上解答屬于層級4,可得設(shè)計分5分,解答分7分】

問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設(shè)存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

,

顯然當(dāng)時,上述等式成立。例如取,得:

第一個子數(shù)列:,各項和;第二個子數(shù)列:,

各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

【以上解答屬層級3,可得設(shè)計分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個層級評分】

問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

【以上問題四、問題五等都屬于層級4的問題設(shè)計,可得設(shè)計分5分。解答分最高7分】

 


同步練習(xí)冊答案