查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對(duì)任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
(2,2)

查看答案和解析>>

一、填空題:(5’×11=55’)

題號(hào)

1

2

3

4

5

6

答案

0

(1,2)

2

題號(hào)

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號(hào)

12

13

14

15

答案

A

C

B

<center id="oi6ih"></center>

20090116

三、解答題:(12’+14’+15’+16’+22’=79’)

16.解:由條件,可得,故左焦點(diǎn)的坐標(biāo)為

設(shè)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為,故

因?yàn)?sub>,所以

,

由二次函數(shù)性質(zhì)可知,當(dāng)時(shí),取得最小值4.

所以,的模的最小值為2,此時(shí)點(diǎn)坐標(biāo)為

17.解:(1)當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),;(不單獨(dú)分析時(shí)的情況不扣分)

當(dāng)時(shí),

(2)由(1)知:當(dāng)時(shí),集合中的元素的個(gè)數(shù)無(wú)限;

當(dāng)時(shí),集合中的元素的個(gè)數(shù)有限,此時(shí)集合為有限集.

因?yàn)?sub>,當(dāng)且僅當(dāng)時(shí)取等號(hào),

所以當(dāng)時(shí),集合的元素個(gè)數(shù)最少.

此時(shí),故集合

18.(本題滿分15分,1小題6分,第2小題9

解:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (2)解:如圖所示.由,,則

所以,四棱錐的體積為

19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

由此可得,;

由規(guī)律②可知,,

;

又當(dāng)時(shí),,

所以,,由條件是正整數(shù),故取

    綜上可得,符合條件.

(2) 解法一:由條件,,可得

,

,

,

因?yàn)?sub>,所以當(dāng)時(shí),,

,即一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

解法二:列表,用計(jì)算器可算得

月份

6

7

8

9

10

11

人數(shù)

383

463

499

482

416

319

故一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

20.解:(1)依條件得: 則無(wú)窮等比數(shù)列各項(xiàng)的和為:

     ;

  (2)解法一:設(shè)此子數(shù)列的首項(xiàng)為,公比為,由條件得:,

,即    

 則 .

所以,滿足條件的無(wú)窮等比子數(shù)列存在且唯一,它的首項(xiàng)、公比均為

其通項(xiàng)公式為,.

解法二:由條件,可設(shè)此子數(shù)列的首項(xiàng)為,公比為

………… ①

又若,則對(duì)每一

都有………… ②

從①、②得

;

因而滿足條件的無(wú)窮等比子數(shù)列存在且唯一,此子數(shù)列是首項(xiàng)、公比均為無(wú)窮等比子

數(shù)列,通項(xiàng)公式為,

(3)以下給出若干解答供參考,評(píng)分方法參考本小題閱卷說(shuō)明:

問(wèn)題一:是否存在數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們各項(xiàng)的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說(shuō)明理由.

解:假設(shè)存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使它們的各項(xiàng)和之積為1。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

,

因?yàn)榈仁阶筮吇驗(yàn)榕紨?shù),或?yàn)橐粋(gè)分?jǐn)?shù),而等式右邊為兩個(gè)奇數(shù)的乘積,還是一個(gè)奇數(shù)。故等式不可能成立。所以這樣的兩個(gè)子數(shù)列不存在。

【以上解答屬于層級(jí)3,可得設(shè)計(jì)分4分,解答分6分】

問(wèn)題二:是否存在數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們各項(xiàng)的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說(shuō)明理由.

解:假設(shè)存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使它們的各項(xiàng)和相等。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

………… ①

,則①,矛盾;若,則①

,矛盾;故必有,不妨設(shè),則

………… ②

1當(dāng)時(shí),②,等式左邊是偶數(shù),

右邊是奇數(shù),矛盾;

2當(dāng)時(shí),②

,

兩個(gè)等式的左、右端的奇偶性均矛盾;

綜合可得,不存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們的各項(xiàng)和相等。

【以上解答屬于層級(jí)4,可得設(shè)計(jì)分5分,解答分7分】

問(wèn)題三:是否存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說(shuō)明理由.

解:假設(shè)存在滿足條件的原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

,

顯然當(dāng)時(shí),上述等式成立。例如取,,得:

第一個(gè)子數(shù)列:,各項(xiàng)和;第二個(gè)子數(shù)列:,

各項(xiàng)和,有,因而存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍。

【以上解答屬層級(jí)3,可得設(shè)計(jì)分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個(gè)層級(jí)評(píng)分】

問(wèn)題四:是否存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說(shuō)明理由.解(略):存在。

問(wèn)題五:是否存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說(shuō)明理由.解(略):不存在.

【以上問(wèn)題四、問(wèn)題五等都屬于層級(jí)4的問(wèn)題設(shè)計(jì),可得設(shè)計(jì)分5分。解答分最高7分】

 


同步練習(xí)冊(cè)答案