例3.設(shè)Q是圓上的動(dòng)點(diǎn).另有點(diǎn)A.線段AQ的垂直平分線l交半徑OQ于點(diǎn)P.當(dāng)Q點(diǎn)在圓周上運(yùn)動(dòng)時(shí).則點(diǎn)P的軌跡是何曲線? 查看更多

 

題目列表(包括答案和解析)

設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過(guò)點(diǎn)A與x軸垂直的直線,D是直線i與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足|DM|=m|DA|(m>0,且m≠1),當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C。
(1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
(2)過(guò)原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過(guò)點(diǎn)A與x軸垂直的直線,D是直線i與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足|DM|=m|DA|(m>0,且m≠1)。當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C。
(1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
(2)過(guò)原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過(guò)點(diǎn)A與x軸垂直的直線,D是直線l與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1)。當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C。

(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);

(Ⅱ)過(guò)原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

 (2012年高考湖北卷理科21)(本小題滿分13分)

設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過(guò)點(diǎn)A與x軸垂直的直線,D是直線i與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1)。當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C。

(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);

(Ⅱ)過(guò)原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過(guò)點(diǎn)A與x軸垂直的直線,D是直線i與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
(Ⅱ)過(guò)原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案