A.⊥.//.// B.⊥.=. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

15、A.化極坐標(biāo)方程ρ2cosθ-ρ=0為直角坐標(biāo)方程為
x2+y2=0或x=1

B.不等式|2-x|+|x+1|≤a對任意x∈[0,5]恒成立的實數(shù)a的取值范圍為
[9,+∞)

查看答案和解析>>

精英家教網(wǎng)A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于點E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線C1=x2+2y2=1在矩陣M=[
12
01
]的作用下變換為曲線C2,求C2的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上一點,求它到直線C2
x=1+2t
y=2
(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設(shè)n∈N*,求證:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.已知矩陣M
2-3
1-1
所對應(yīng)的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標(biāo).
C.已知圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

8、α,β,γ為不重合的平面,l,m,n表示直線,下列敘述正確的序號是
①②③

①若P∈α,Q∈α,則PQ?α;②若AB?α,AB?β,則A∈(α∩β)且B∈(α∩β);
③若α∥β且β∥γ,則α∥γ;④若l⊥m且m⊥n,則l⊥n.

查看答案和解析>>

一、選擇題:

1.B  2.C  3.B  4.A  5.A  6.B  7.D  8.D  9.C  10.D  11.C  12.B

二、填空題:

13.{2,3,4}    14.    15.    16.①②④

三.17解:解: 所在的直線的斜率為=,………………(2分)

設(shè)直線的斜率為 …………………………………………………(4分)

∴直線的方程為:, …………………………………………………(6分)

………………………………………………………………………(8分)

直線與坐標(biāo)軸的交點坐標(biāo)為…………………………………………(10分)

∴直線與坐標(biāo)軸圍成的三角形的面積……………………(12分)

18.解:(1)∵AE∶EB=AH∶HD,∴EH//BD,CF∶FB=CG∶GD,

∴FG//BD,∴EH//FG,          …………………………………………………(2分)

,∴,

同理,∴EH=FG          

∴EHFG

故四邊形EFGH為平行四邊形. …………………(6分)

(2) ∵AE∶EB= CF∶FB,∴EF//AC,

又∵AC⊥BD,∴∠FEH是AC與BD所成的角,………………………(10分)

∴∠FEH=,從而EFGH為矩形,∴EG=FH. ………………………………(12分)

 

 

 

 

 

 

19.解:解:(1)直觀圖如圖:

 

 

 

 

 

 

 

 

 

                                …………………………………………………(6分)

(2)三棱錐底面是斜邊為5cm,斜邊上高為的直角三角形.

其體積為V=           ………………………………(12分)

20.解: (1)設(shè)每輛車的月租金定為x元,則租賃公司的月收益為:

=(100-)(x-150)-×50,…………………(4分)

整理得:=-+162x-21000   …………………………………………………(6分)

(2)每輛車的月租金為元…………………………………(8分)

時,

當(dāng)租出了88輛車時,租賃公司的月收益303000元. ………………………………(12分)

21.解:點的坐標(biāo)為∠的平分線與邊上的高所在直線的交點的坐標(biāo),即

,解得,點的坐標(biāo)為  …………………………(4分)

直線的方程為,即: ………………………(6分)

點關(guān)于的對稱點的坐標(biāo)為,則

,解得,即………………………………………(8分)

直線的方程為:      ……………………………………………………(10分)

的坐標(biāo)是交點的坐標(biāo):

,解得,所以的坐標(biāo) …………………………(12分)

22.解:(1)∵ AB⊥平面BCD      平面ABC⊥平面BCD CD⊥平面ABC

               AB 平面ABC   ∠BCD=900

          又∵EF∥CD     ……………………………(4分)

EF⊥平面ABC,   ∴平面BEF⊥平面ABC………………(6分)

(2)平面BEF⊥平面ACD                

AC⊥EF       AC⊥平面BEF, ∴AC⊥BE………(8分)

平面BEF∩平面ACD=EF

在Rt△BCD中,BD=,

在Rt△ABD中,AB=?tan60°=  ……………………………………(10分)

在Rt△ABC中,AC= , ∴………………(12分)

,

時,平面DEF⊥平面ACD.  ……………………………………(14分)

 

 

 

 

 


同步練習(xí)冊答案