(1)若.求過點(2.)的直線方程, 查看更多

 

題目列表(包括答案和解析)

過點(1,0)直線l交拋物線y2=4x于A(x1,y1),B(x2,y2)兩點,拋物線的頂點是O.
(�。┳C明:數(shù)學(xué)公式為定值;
(ⅱ)若AB中點橫坐標(biāo)為2,求AB的長度及l(fā)的方程.

查看答案和解析>>

過點(1,0)直線l交拋物線y2=4x于A(x1,y1),B(x2,y2)兩點,拋物線的頂點是O.
(�。┳C明:為定值;
(ⅱ)若AB中點橫坐標(biāo)為2,求AB的長度及l(fā)的方程.

查看答案和解析>>

已知直線方程為(2+m)x+(1-2m)y+4-3m=0.
(Ⅰ)證明:直線恒過定點M;
(Ⅱ)若直線分別與x軸、y軸的負(fù)半軸交于A,B兩點,求△AOB面積的最小值及此時直線的方程.

查看答案和解析>>

過點M(3,0)作直線l與圓x2+y2=25交于A、B兩點.
(1)若點P是線段AB的中點,求點P的軌跡方程;
(2)求直線l的傾斜角為何值時△AOB的面積最大,并求這個最大值.

查看答案和解析>>

一、選擇題:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

  • <ul id="2i40g"></ul>
      <menu id="2i40g"><em id="2i40g"></em></menu>

      20080522

       

      二、填空題:

      13.13   14.   15.       16.②③

      三、解答題:

       17.解:(1) f()=sin(2-)+1-cos2(-)

                = 2[sin2(-)- cos2(-)]+1

               =2sin[2(-)-]+1

               = 2sin(2x-) +1  …………………………………………5分

      ∴ T==π…………………………………………7分

        (2)當(dāng)f(x)取最大值時, sin(2x-)=1,有  2x- =2kπ+ ……………10分

      =kπ+    (kZ) …………………………………………11分

      ∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

       

      18.解:(1) :當(dāng)時,,…………………………………………1分

      當(dāng)時,.

      ……………………………………………………………………………………3分

      是等差數(shù)列,

      ??????????…………………………………………5?分

       (2)解:, .…………………………………………7分

      ,, ……………………………………8分

      ??????????…………………………………………??9分

      .

      ,,即是等比數(shù)列. ………………………11分

      所以數(shù)列的前項和.………………………12分

      19.解(1)∵函數(shù)的圖象的對稱軸為

      要使在區(qū)間上為增函數(shù),

      當(dāng)且僅當(dāng)>0且……………………2分

      =1則=-1,

      =2則=-1,1

      =3則=-1,1,;………………4分

      ∴事件包含基本事件的個數(shù)是1+2+2=5

      ∴所求事件的概率為………………6分

      (2)由(1)知當(dāng)且僅當(dāng)>0時,

      函數(shù)上為增函數(shù),

      依條件可知試驗的全部結(jié)果所構(gòu)成的區(qū)域為

      構(gòu)成所求事件的區(qū)域為三角形部分�!�8分

      ………………10分

      ∴所求事件的概率為………………12分

      20解:(1):作,連

      的中點,連、,

      則有……………………………4分

      …………………………6分

      (2)設(shè)為所求的點,作,連.則………7分

      就是與面所成的角,則.……8分

      設(shè),易得

      ……………………………………10分

      解得………11分

      故線段上存在點,且時,與面角. …………12分

       

      21.解(1)由

          

      過點(2,)的直線方程為,即

         (2)由

      在其定義域(0,+)上單調(diào)遞增。

      只需恒成立

      ①由上恒成立

      ,∴,∴,∴…………………………10分

      綜上k的取值范圍為………………12分

      22.解:(1)由題意橢圓的離心率

      ∴橢圓方程為………………3分

      又點(1,)在橢圓上,∴=1

      ∴橢圓的方程為………………6分

         (2)若直線斜率不存在,顯然不合題意;

      則直線l的斜率存在�!�7分

      設(shè)直線,直線l和橢交于,。

      依題意:………………………………9分

      由韋達定理可知:………………10分

      從而………………13分

      求得符合

      故所求直線MN的方程為:………………14分

       

       

       

       


      同步練習(xí)冊答案
      <strike id="2i40g"></strike>
      闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�