題目列表(包括答案和解析)
n個正數(shù)a1,a2,…,an的算術-幾何平均不等式.
對于n個正數(shù)a1,a2,…,an,它們的算術平均不小于它們的幾何平均,即≥________.
當且僅當________時,等號成立.
α |
β |
α |
β |
α |
β |
α |
β |
x |
y |
x+y |
1 |
x |
2 |
y |
1 |
x |
2 |
y |
π |
2 |
2 |
tan2α |
2 |
2 |
tan2α |
2 |
2 |
2 |
1-x |
x |
x+1 |
x |
已知函數(shù),
(1)求函數(shù)的定義域;
(2)求函數(shù)在區(qū)間上的最小值;
(3)已知,命題p:關于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.
【解析】第一問中,利用由 即
第二問中,,得:
,
第三問中,由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由 即
(2),得:
,
(3)由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時,
當命題p為假,命題q為真時,,
所以
請先閱讀:
設平面向量=(a1,a2),=(b1,b2),且與的夾角為è,
因為•=||||cosè,
所以•≤||||.
即,
當且僅當è=0時,等號成立.
(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)試求函數(shù)的最大值.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com