題目列表(包括答案和解析)
( 本小題滿分12分)
如圖,三棱柱ABC—A1B1C1中,底面為正三角形,側(cè)棱與底面垂直,D是BC的中點,AA1=AB=1。
(1) 求證:A1C∥平面AB1D;
(2) 求點C到平面AB1D的距離。
(本小題滿分14分)
已知斜三棱柱ABC—A1B1C1的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α (0°<α<90°),點在底面上的射影落在上.
(1)求證:AC⊥平面BB1C1C;
(2)若AB1⊥BC1,D為BC的中點,求α ;
(3)若α = arccos ,且AC=BC=AA1時,求二面角C1—AB—C的大小.
(本小題滿分12分)
如圖,四棱柱ABCD—A1B1C1D1的底面邊長和側(cè)棱長都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,點O為底面對角線AC與BD的交點.
(Ⅰ)證明:A1O⊥平面ABCD;
(Ⅱ)求二面角D—A1A—C的平面角的正切值.
(本小題滿分12分) 如圖,四棱柱的底面是邊長為的正方形,底面,,點在棱上,點是棱的中點
(1)當平面時,求的長;
(2)當時,求二面角的余弦值。
(本小題滿分12分) 如圖,四棱柱的底面是邊長為的正方形,底面,,點在棱上,點是棱的中點
(1)當平面時,求的長;
(2)當時,求二面角的余弦值。
1―5、 CDDCA 6―10、DABAB 11、 12、1, 9
13解:因為方程x 2 + mx + 1=0有兩個不相等的實根,
所以Δ1=m 2 ? 4>0, ∴m>2或m < ? 2
又因為不等式4x 2 +4(m ? 2)x + 1>0的解集為R,
所以Δ2=16(m ? 2) 2? 16<0, ∴1< m <3
因為p或q為真,p且q為假,所以p與q為一真一假,
(1)當p為真q為假時,
(2)當p為假q為真時,
綜上所述得:m的取值范圍是或
14、解: 直線方程為y=-x+4,聯(lián)立方程,消去y得,.
設(shè)A(),B(),得
所以:,
由已知可得+=0,從而16-8p=0,得p=2.
所以拋物線方程為y2=4x,焦點坐標為F(1,0)
15、解(Ⅰ) AC與PB所成角的余弦值為.
(Ⅱ)N點到AB、AP的距離分別為1,.
16解: (1); (2)略
17、6 18、①②③⑤ 19、B 20、B
21、解:(1)略 (2)
22、解:(1)設(shè)雙曲線C的漸近線方程為y=kx,則kx-y=0
∵該直線與圓 相切,∴雙曲線C的兩條漸近線方程為y=±x.
故設(shè)雙曲線C的方程為.又雙曲線C的一個焦點為,
∴,∴雙曲線C的方程為:.
(2)由得.令
∵直線與雙曲線左支交于兩點,等價于方程f(x)=0在上有兩個
不等負實根.
因此,解得..
(3). ∵ AB中點為,
∴直線l的方程為:. 令x=0,得.
∵,∴,∴.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com