過雙曲線M:的左頂點A作斜率為1的直線.若與雙曲線M的兩條漸近線分別相交于點B.C.且|AB|=|BC|.則雙曲線M的離心率是(**) 查看更多

 

題目列表(包括答案和解析)

過雙曲線M的左頂點A作斜率為1的直線l,若l與雙曲線M的兩條漸近線分別相交于點B、C,且|AB|=|BC|,則雙曲線M的離心率是(  )

A.                        B.                          C.                       D.

查看答案和解析>>

過雙曲線M的左頂點A作斜率為1的直線l,若l與雙曲線M的兩條漸近線分別相交于點B、C,且|AB|=|BC|,則雙曲線M的離心率為…(  )

A.                        B.                          C.                       D.

查看答案和解析>>

過雙曲線M的左頂點A作斜率為1的直線l,若l與雙曲線M的兩條漸近線相交于BC, 且, 則雙曲線M的離心率為_____________.

查看答案和解析>>

過雙曲線M:的左頂點A作斜率為1的直線l,若l與雙曲線M的兩條漸近線分別相交于點B,C,且|AB|=|BC|,則雙曲線M的離心率是
[     ]
A.
B.
C.
D.

查看答案和解析>>

過雙曲線M的左頂點A作斜率為1的直線l,若l與雙曲線M的兩條漸近線分別相交于點B、C,且,則雙曲線M的離心率是

A.         B.        C.          D.

查看答案和解析>>

1―5、  CDDCA   6―10、DABAB    11、    12、1,  9

13:因為方程x 2 + mx + 1=0有兩個不相等的實根,

所以Δ1=m 2 ? 4>0,  ∴m>2或m < ? 2               

又因為不等式4x 2 +4(m ? 2)x + 1>0的解集為R,

所以Δ2=16(m ? 2) 2? 16<0,   ∴1< m <3            

因為pq為真,pq為假,所以pq為一真一假, 

(1)當p為真q為假時,

(2)當p為假q為真時,    

綜上所述得:m的取值范圍是

14、解:  直線方程為y=-x+4,聯(lián)立方程,消去y得,.

設(shè)A(),B(),得

所以:,

由已知可得+=0,從而16-8p=0,得p=2.

所以拋物線方程為y2=4x,焦點坐標為F(1,0)

15、解(Ⅰ) AC與PB所成角的余弦值為.

 (Ⅱ)N點到AB、AP的距離分別為1,.

16解:   (1); (2)略

17、6        18、①②③⑤         19、B     20、B

21、解:(1)略  (2)

22、解:(1)設(shè)雙曲線C的漸近線方程為y=kx,則kx-y=0

∵該直線與圓 相切,∴雙曲線C的兩條漸近線方程為y=±x.

故設(shè)雙曲線C的方程為.又雙曲線C的一個焦點為,

,∴雙曲線C的方程為:.

(2)由.令

∵直線與雙曲線左支交于兩點,等價于方程f(x)=0在上有兩個

不等負實根.

因此,解得..                       

(3). ∵ AB中點為,

∴直線l的方程為:. 令x=0,得

,∴,∴.     

 

 

 

 

 

 


同步練習冊答案